
Modern documentation 
tools and approaches
ATLAS Software and Computing Documentation Workshop

@GiordonStark and @MarioLassnig 
December 11th, 2017
https://indico.cern.ch/event/681173/ 1

https://indico.cern.ch/event/681173/


Outline for today

Community input

A summary of solicited 
input from ATLAS 
community at-large

● What do we use?
● What do we like?
● What do we dislike?

Available tools

What are some modern 
tools available used 
elsewhere?

● How do these tools 
map to what the 
community uses?

Moving forward

Can we move forward 
and use more centralized 
tools?

● How might we 
migrate to these 
tools?

2



What are the main challenges?

Challenge 1

Vague formats

Good documentation 
tools should be intuitive 
and resilient.

Users will not want to 
write documentation if 
they don’t understand the 
format or how to make it.

Challenge 2

Out-of-date docs

Documentation often 
becomes stale or crusty. 

Implementation is easy 
but maintenance is hard. 
How do we ensure 
documentation is 
up-to-date?

Challenge 3

Lack of good search

Above all, docs must be 
accessible. Users should 
be able to search. If you 
have to bookmark pages 
because you can’t find it 
otherwise, then discovery 
needs to be improved.

3



Input
from the ATLAS community

An email was sent out to solicit 
responses from the ATLAS 
community about their 
comments/suggestions

4



Existing tools
- LXR 

- USATLAS has asked BNL to continue to 
maintain it as there is no modern tool with 
equivalent functionality

- Can we replace LXR with GitLab search? 
Continue to support LXR?

- Twiki
- Must preserve twikis (no matter what?)
- Mix of outdated and up-to-date docs
- Comments about not being proactive and 

making changes to twiki - it doesn’t feel 
open? Difficult for external people to join.

- Can’t find anything
- Cannot draw diagrams!
- ADC: using more and more Google Docs 5

http://acode-browser.usatlas.bnl.gov/lxr/search
https://twiki.cern.ch/


How are we currently documenting?

6

- XRootD
- Maintained in a Microsoft Word Doc
- Compiled into PDF and HTML and hosted online
- Documenting features before implementing them

- Rucio
- Auto generated from Sphinx to ReadTheDocs: https://rucio.readthedocs.io/ 
- Rucio-related plugin Xcache is on Github wiki
- Modernization of website: https://rucio.cern.ch/ 

- Pilot 2
- Will be generated using Sphinx and hosted on Github
- Internal documentation in twiki, technical documents in Google Docs

- Harvester
- Uses GitHub wiki: https://github.com/PanDAWMS/panda-harvester/wiki 

- CP Groups and Analyzers
- Most use Twiki, but not a lot of input from them for this talk
- Do they want other options for documenting?
- ATLAS Offline Software uses Jekyll: https://atlassoftwaredocs.web.cern.ch/

https://rucio.readthedocs.io/
https://github.com/wyang007/rucioN2N-for-Xcache/wiki
https://rucio.cern.ch/
https://github.com/PanDAWMS/panda-harvester/wiki
https://atlassoftwaredocs.web.cern.ch/


Common complaints

- Documentation is all over the place, need to know what is where
- Sometimes duplicate documents with minor/major different contents
- No easy way to distinguish current and outdated documents
- Lots of information can only be found in presentations
- Twikis would be fine if automatic deployment to twikis were possible

- Still, can be considered a heavy case of Stockholm syndrome

- Collaborative editing like Google Docs is important for ADC
- Don’t know how to quickly find anything in twiki except for bookmarks
- Would like to have documentation be user-contributed, but it

creates a disjointed document because of the
many writing styles

7



Some questions

- Different documentation for different users: developers, ops, shifters, 
analyzers - who maintains each kind?

- Are we using the best tools?
- Can we retire LXR in favor of GitLab?
- Is it possible to put together an ATLAS style guide for documentation?

8



- Host a docathon - a week where everyone is strongly encouraged to make changes only 
to documentation, update, and do some housekeeping

- Berkeley Institute for Data Science has done this in the past: 
https://www.eventbrite.com/e/bids-docathon-kickoff-tickets-32302896834?aff=mcivte

- Perhaps would be nice to do this during the (E)YETS or during other breaks
- Doxygen has always been helpful, more effort to have doxygen used consistently
- Create a documentation “style guide” for ATLAS specifying best procedures along with 

working examples of implementation
- Create a dedicated working group whose job is to maintain documentation

- Keep docs organized, centrally located, and up-to-date
- Contact relevant persons to gather needed information
- Experts on tools and techniques for doc migration

Some suggestions

9

https://www.eventbrite.com/e/bids-docathon-kickoff-tickets-32302896834?aff=mcivte


Available tools

10



Documenting code

11

- C++
- Doxygen is really the only solution here, but it’s a great solution
- Requires a specific format for your comments

- Python
- Using docstrings in python, documentation can be extracted with autodoc (part of Sphinx)
- Also natively allows for doctesting which can keep documentation fresh automatically

- C++ and Python in the same project
- Breathe is a great extension that lets you run doxygen on your C++ code and combine it with 

Sphinx on your Python code to produce a single set of documentation incorporating both

At the end of the day, users need to be vigilant about adding
comments to their code. A central ATLAS style guide for
formatting comments will simplify the rest of the process.

http://www.sphinx-doc.org/en/stable/ext/autodoc.html
http://www.sphinx-doc.org/en/stable/
https://breathe.readthedocs.io/en/latest/


Creating documentation

- Doxygen: can create an HTML output for you
- ATLAS uses it: https://atlas-sw-doxygen.web.cern.ch/atlas-sw-doxygen/index.php

- GitLab pages: host static websites from your repository
- Many example projects here https://gitlab.com/groups/pages including hugo, jekyll, hyde, 

nanoc, doxygen, gitbook, sphinx, and mkdocs
- (The same is basically true for GitHub)
- Our GitLab CERN instance has GitLab pages disabled, in favor of CERN espaces

- Vendor lock-in to Microsoft Sharepoint
- Not a good impression for the open-source community...

12

https://atlas-sw-doxygen.web.cern.ch/atlas-sw-doxygen/index.php
https://about.gitlab.com/features/pages/
https://gitlab.com/groups/pages


Case Studies - Real World Use

13



Case Study 1: xAODAnaHelpers
- xAODAnaHelpers is a general analysis framework
- Documentation is hosted in two places:

- ReadTheDocs: https://xaodanahelpers.readthedocs.io/en/master/ 
- GitHub Pages: https://ucatlas.github.io/xAODAnaHelpers/ 

- Documentation is written in two places
- C++ doxygen comments in header files
- Python docstrings in python scripts/packages

- Documentation is organized using RST (reStructured Text) files
- Glued together using Doxygen+Breathe+Sphinx with continuous integration

- ReadTheDocs has a webhook to trigger builds, built from continuous integration

14

Doxygen Comments Output

https://xaodanahelpers.readthedocs.io/en/master/
https://ucatlas.github.io/xAODAnaHelpers/


Case Study 2: Ironman 

15

- L1Calo communication software for embedded OS
- Documentation is hosted in ReadTheDocs

- ReadTheDocs: https://xaodanahelpers.readthedocs.io/en/master/ 

- Documentation is written in Python
- Allows for automatic doctesting to ensure your documentation does not get stale and 

represents how your code should function

https://xaodanahelpers.readthedocs.io/en/master/


Case Study 3: SUSYTools 

16

- SUSYTools is part of the ASG software releases
- Documentation in two places

- For developers: README.md on GitLab
- For physicists/analyzers: on a twiki

- This is nice as both the twiki and GitLab README cross-link each other
- If you know how to find one set of docs, you can find the other set of docs

- Since each documentation has an audience focus, splitting it up makes sense
- README is in Markdown format, plain-text, easy to format

- Generally follows release more tightly as it is part of git commits
- Twiki is not tied to commits in atlas/athena, physics recommendations

often follow software releases

https://gitlab.cern.ch/atlas/athena/blob/21.2/PhysicsAnalysis/SUSYPhys/SUSYTools/README.md
https://gitlab.cern.ch/atlas/athena/tree/21.2/PhysicsAnalysis/SUSYPhys/SUSYTools
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/BackgroundStudies
https://gitlab.cern.ch/atlas/athena/


Case Study 4: Jet/MET

17

- Jet/MET is a CP group in ATLAS
- A tutorial in release 21 is on GitLab

- https://gitlab.cern.ch/atlas-jetetmiss/JetRecoTutorial_R21 

- Shows how to run jet finding, grooming, and substructre
- Using C++ and calls to fastjet
- Using ATLAS JetRec package
- Using Python entirely to configure everything

- Very nice as example code and tutorial are together
- Keeping everything in one “module” makes it easier for a new user

- Entire tutorial is a single markdown file (README.md)
- Tutorial is located under atlas-jetetmiss, maybe a central location

for tutorials would be better? [all CP group tutorials in one place?]

https://gitlab.cern.ch/atlas-jetetmiss/JetRecoTutorial_R21


Case Study 5: ASG Software Docs

18

- As part of migration to release 21, large effort to write new docs
- Documentation is hosted on CERN DFS and maintained in GitLab

- https://gitlab.cern.ch/atlas-sw-git/atlassoftwaredocs/ 

- A nice example of using CERN-only applications/packages for documentation
- GitLab CI builds the documentation and deploys it
- Jekyll (a blogging platform) is used to generate the static site (uses Ruby and markdown files)

- Is DFS a good fit for this? (see knowledgebase article for EOS alternative)
- Note that CERN disabled GitLab pages in favor of DFS and EOS because of a lack of SSO 

support (reasonable)
- DFS requires an active user to own, but how to persist after that person leaves? What if we 

forget?

https://dfs.cern.ch/
https://gitlab.cern.ch/atlas-sw-git/atlassoftwaredocs/
https://cern.service-now.com/service-portal/article.do?n=KB0003905
https://espace.cern.ch/webservices-help/Websitemanagement/ManagingWebsitesatCERN/Pages/WebsitecreationandmanagementatCERN.aspx#owner


Case Study 6: Rucio and DDM

● Three types of documentation (Tech, Ops, Public)
● Technical: Code and API

○ Started with PyDoc but now moved to Sphinx (easier)

● Operational: Clients
○ The same, however common complaints about old CLI examples

● Operational: Howtos
○ Basically ATLAS operational documentation, everything in TWikis

● Operational: Meetings, Reports, Incidents
○ Collaborative editing in Google Docs — Diagramming must have!
○ Weekly meetings are fully in Indico minutes

● Public: Presentations and Online Support
○ Shared Google Slides folder with a single template
○ Papers: Collaborative LaTeX editing using Overleaf
○ Online support: Slack (also for outside ATLAS support) 19



Moving forward

20



Summary
- Main challenges

- Maintenance and education
- Automate the creation of documentation from the code
- Crosslink documentation between projects
- Diagramming is a pain
- Collaborative editing of "operational documentation"
- Removing outdated documentation / duplicates
- Making documentation searchable / discoverable

- The tools are there, it doesn't look like a technological problem
- (never mind that twiki is slow as a snail and hates concurrent updates)

- Proposed next steps
- ??? DISCUSS!

21


