ATLAS Upgrade Plans

K. Einsweiler, LBL

- Provide a very brief overview of Phase-1 Upgrades
- Provide deeper look at Phase-2 Upgrades drawing from six approved TDRs and Timing Detector TP
- Details are generally to be found in later talks in this workshop!
Phase-1 Upgrades

- ATLAS produced a total of five “Phase-1” TDRs, and has additional “small projects”.

- Two TDR projects are in commissioning phase (FTK = hardware tracking trigger, and AFP = forward proton detectors in Roman pots) => not discussed further here.

- Additional small project BIS78 = upgrade of largest η chambers in BI (Inner Layer of Muon Spectrometer Barrel) with phase-2 “final prototypes” = sMDT + RPC chambers. Total of 16 chambers, 8/side. Chambers ~ final, electronics = prototypes.

- Three major projects are Phase-1 LAr upgrade, Phase-1 TDAQ upgrade, and NSW. All of these upgrade projects must be “phase-2 compliant”, and will continue to be used during HL-LHC operations.
 - **Phase-1 LAr**: Upgrade of trigger path for LAr calorimeter. Analog trigger tower sub-divided into 10 supercells digitized into 12-bits@40 MHz, and transmitted optically to FPGA-based back-ends for calibration and signal processing.
 - **Phase-1 TDAQ**: Includes L1Calo upgrade to digital “feature extractors” (eFEX for e/τ, jFEX for small-R jets and MET, gFEX for large-R jets), TREX (tile feature extractor), updated Sector Logic and MUCTPI (Muon trigger upgrade), and FELIX (network-based switching fabric for phase-1 and phase-2)
 - **NSW**: replacement for present small wheels (1.3 < η < 2.7) based on sTGC and MicroMegas chamber technologies with 8+8 measurement planes and sophisticated digital trigger processor to provide track segments pointing back to the vertex and matching endcap muon systems.
Overview of Phase-2 Upgrade Program
(ultimate $L=7.5 \times 10^{34}$, $\mu = 200$)

ATLAS Phase-II Upgrade

Overview, for more details on Phase-II ATLAS upgrade projects, please see slides in backup.

- **Upgraded Trigger and Data Acquisition System:**
 - L0: 1 MHz
 - Improved High-Level Trigger

- **Electronics Upgrade:**
 - LAr Calorimeter
 - Tile Calorimeter
 - Muon system

- **New Inner Tracking Detector**
 (all silicon tracker, up to $|\eta| = 4$)

- **Options:**
 - High granularity timing detector (forward region)
 - High-η muon tagger
 - Forward detectors, incl. luminosity

- **New muon chambers in the inner barrel region**
Phase-2 Inner Tracker (ITk) Overview

• Complete replacement of Inner Detector with all-Silicon tracker covering to $\eta = 4.0$

• Highly optimized Tracker layout provides 4 Strip measurements at large radius, and 5 Pixel measurements at small radius in barrel.
• Layout is still evolving for a few more months. Will be based on quad modules.
• Strips has 4 barrels and 6 disks (see material map below). Pixel layout evolves from flat barrel geometry at small η, to inclined layout at intermediate η, and ring geometry at large η. Minimizes silicon area and material.
• Number of hits in barrel \sim 13 (2 hits/strip module), and in more forward regions at least 9 pixel hits (see hit plot below right).
Phase-2 Inner Tracker (ITk) Performance

- Performance shown for d0 and z0, vertexing, and b-tagging up to $\eta=4.0$ (Run 2/ITk)
Phase-2 Inner Tracker (ITk) Strip/Pixel Layout and Fluences

- Complete replacement of Inner Detector with all-Silicon tracker covering to $\eta = 4.0$

- All fluences include ATLAS safety factors (1.5), Strip = 3 ab$^{-1}$, Pixel = 4 ab$^{-1}$.
- Lower left = Strip TID map, max at last disk layer is roughly 0.5 MGy (8 x 10^{14} 1 MeV n equivalent).
- Lower right = Pixel TID map, max in innermost layer ($r \sim 39$ mm) is ~10 MGy (1.3 x 10^{16} 1 MeV n equivalent) for 2 ab$^{-1}$. Must assume that inner two Pixel layers are replaceable!
Phase-2 Inner Tracker (ITk) Strip System

- Upper left = FE ASIC block diagram (binary readout, 256 ch/ASIC). Upper right = barrel module, lower left barrel “mini-stave). Lower right = strip endcap with petals.
Phase-2 Inner Tracker (ITk) Pixel Modules

- Pixel FE ASIC prototype = RD53A (400x192 pixels) – first bumped assemblies now available! Several module geometries, use mostly quad modules. Final ASIC = 400x384 pixels, ~600K channels/quad.

- Data transmission challenge:
 - FE ASIC uses 4 x 1.28 Gb/s links.
 - Innermost layer FE uses 5.12 Gb/s, outermost layer Quad uses 5.12 Gb/s
 - Use TWP + Twin-ax electrical link in tracker volume.
Phase-2 High Granularity Timing Detector (HGTD) I

- Disks covering $2.4 < \eta < 4.0$ with 2(3) hits per track for $R > 30$ cm and $R < 30$ cm.
Phase-2 High Granularity Timing Detector (HGTD) II

- Disks covering $2.4 < \eta < 4.0$ with 2(3) hits per track for $R > 30$ cm and $R < 30$ cm.

- Upper plots = ROC curves for pileup jet rejection in region covered by HGTD.
- Observe factor 5-10 additional rejection using HGTD using RPT observable (based on tracks pointing to jet, and timing compatibility with PV).

- Lower plots = b-tagging performance and light-jet mis-tag performance versus η with and without HGTD. Factor 1.5-2 for tagging, factor 2-3 for mis-tag.
- Based on simple algorithms!
Phase-2 High Granularity Timing Detector (HGTD) III

- Disks covering $2.4 < \eta < 4.0$ with 2(3) hits per track for $R > 30$ cm and $R < 30$ cm.

- Design based on LGADs from HPK and CNM. Nominal geometry will be 15x15 array of 1.3 x 1.3 mm pixels.
- Modules made up of 2 ASICs bump-bonded to single sensor => roughly 2 x 4 cm2.
- Upper right = gain versus NIEL fluence and HV bias.
- Nominal goal = gain of 10, achievable for fluence up to $\sim 3\times10^{15}$ 1 MeV n equivalent.
- Lower left = first FE ASIC prototype jitter versus charge (nominal ~ 10 fC from gain 10 and 50µ sensitive layer).
- Lower right = timing resolution after irradiation for both 50m and 35m devices => trade-off $\sigma(t)$ versus C ! (find timing resolution roughly constant for specific gain).
Phase-2 LAr Electronics Upgrade Overview

- Upgrade full electronics chain for phase-2 targets (no detector changes – sFCal dropped in 2016). Stream all digitized data off-detector at 40 MHz.

- On-detector electronics based on new preamp/shaper design in 65/130 nm CMOS.
- Followed by dual 14-bit 40 MHz custom ADC (both full-custom and IP-block being explored).
- Initial prototypes for preamp/shaper and ADC being evaluated, design is ongoing, converge in 2020.
- Will transmit both ADC measurements off-detector at 40 MHz. relative gains optimized to provide 16-17 bits dynamic range, covering low-μ and $\mu=200$.
- Plots indicate this combination delivers excellent performance.
- Use ~30K lpGBT links to transmit data to back-end FPGA-based processing.
Phase-2 LAr Electronics Upgrade Details

- Further details of on-detector and off-detector electronics.

- On-detector ~1500 boards, each with 22 lpGBT data links and 4 clock/control links.
- Each board handles 128 readout channels.
- Off-detector based on large FPGAs in ATCA, does signal processing (e.g. using Wiener filter with forward correction shown below using up to 24/32 samples). Very sophisticated pileup corrections, calibration, etc.

![Diagram showing the layout of on-detector and off-detector electronics](image)

- Wiener Filter with Half-Value Post-Peak
 - $x(n) \rightarrow y(n) \rightarrow E_i(n)$
 - Forward Correction

- Energy Identification

- Middle Layer, $\tau=0.025$
 - $N=8$, $\sigma_{\text{noise}}=83$ MeV, $\varphi_{\text{EC}}=0$ ns
 - Deposited Energies
 - ADC
 - WFCC

![Graph showing deposited energies and corrections](image)
Phase-2 Tile Calorimeter Upgrade Overview

- Major upgrade of on-detector mechanics and electronics

On-detector Electronics hosted inside girders at rear of TileCal.
- Today, includes LV/HV PS. Consider local vs remote HV.
- All data will be digitized on-detector at 40 MHz. Shielded location allows use of qualified COTS components.
- Shaper followed by dual 12-bit ADCs.
- Careful analysis of failures over last 10 years, improved redundancy and serviceability.
Phase-2 Tile Calorimeter Upgrade Details

- On-detector electronics is highly redundant to minimize failures.

- Detailed organization of on-detector electronics for a “super-drawer”.
- Data transmission uses 9.6 Gb/s optical links.
- Off-detector uses ATCA-based FPGA pre-processor board to process data from 8 super-drawers.
- Reconstructs and prepares data for TDAQ.
Phase-2 Muon Spectrometer Upgrade

- Muon upgrade requires replacement of all on-detector electronics. All data streamed off-detector at 40 MHz. Major upgrade of trigger capability by replacement of BI layer.

- Replace MDT in BIS with sMDT, add RPC triplet for full BI.
- Substantial improvement in trigger capability plus robustness against failures in original RPC layers.
Phase-2 Muon Spectrometer Upgrade Triggering

- Present MS has three RPC layers (below left), L1 Trigger based on RPC and TGC. Addition of fourth RPC layer (triplet not doublet) => major improvement in robustness!

Plots here assume worst-case RPC aging scenario for original chambers (only 65% single-hit efficiency).

In addition to use of fourth RPC layer, also add L0MDT, fast hardware reconstruction of tracks in MDT chambers => allows looser RPC coincidences, gives better PT precision.
Phase-2 TDAQ Upgrade Overview

- Major upgrade of TDAQ system, extending L0Calo FEXs, Muon trigger processors, and adding event-sequential Global trigger at L0 (max L0 rate = 1 MHz, latency 10 µs)
Phase-2 TDAQ Upgrade Trigger

- More detailed view of L0 Trigger showing detector object flow. Addition of Global after FEXs allows sequential rejection using full calorimeter granularity, much more sophisticated algorithms (e.g. k_T jet algorithms using topoclusters).
- Replaces present topological trigger strategy with much more sophisticated options.
Phase-2 TDAQ Upgrade DAQ and HLT

- DAQ system based on FELIX universal network-based interface for TTC and all DAQ functions. Data Handlers provide detector-specific processing, Storage Handler manages event flow to/from Event Filter trigger stage.

- Event Filter consists of HTT “co-processor” (hardware track trigger based on 28 nm AM technology for pattern finding and FPGAs for track fitting) and commodity hardware for sophisticated HLT event selection.

- HTT runs in regional mode on 1 MHz event stream => ~400 kHz output, then global HTT runs at ~100 kHz to find all tracks with PT > 1 GeV. Final output ~10 kHz.
Phase-2 TDAQ Upgrade Trigger Evolution

• Defined an “evolutionary” scheme in which all “hooks” (capabilities needed, which can only be conveniently added during phase-2 upgrade period) are implemented.

• Necessary TDAQ scaling (without requiring major new design work) can be carried out when evolving is deemed necessary (driven by physics or TDAQ/HL-LHC performance). Allows scaling L0 to 4 MHz, and adds L1 hardware track trigger using re-configuration of original HTT hardware. L1 rate ~600-800 kHz (limited by Strips).