





## **Proposed Timing Detectors for ATLAS and CMS**

Lindsey Gray on behalf of the ATLAS and CMS collaborations 24 April 2018







ACES 2018 - Sixth Common ATLAS CMS **Electronics Workshop for LHC Upgrades** 

### **Challenges of the HL-LHC**

- Phase-2 upgrades originally targeted
   5x10<sup>34</sup> Hz/cm<sup>2</sup> = 140 pileup (PU)
- LHC performance is exceptional
- Ultimate HL-LHC luminosity target is now  $7.5 \times 10^{34}$  Hz/cm<sup>2</sup> = 200PU
  - 25% increase in int. luminosity/year
     Extending performance
     at high PU is the key!



- CMS and ATLAS considering timing as an option since 2015
  - Since then we have developed innovative analysis techniques and performed extensive studies
  - The key technologies have made significant progress
- CMS and ATLAS have now included a precision MIP Timing Detectors in their Phase-2 upgrade scopes

## **Timing Provides Four Dimensional Tracking**



With timing resolution of 30 ps, the time separation of interaction vertices is evident.

#### Reduces the effective number of vertices from 200 to 40-50

- ▶ for reasonable vertexing: I5% vertex merge rate reduced to I%
- > similar to current running conditions

## **ATLAS High-Granularity Timing Detector (HGTD)**

- z = 3500mm
- 2 layers each side
- 2.4 <  $|\eta|$  < 4.0
- 30 ps per track over HL-LHC duration
- 1.3 mm x 1.3 mm sensor pitch

max. dose ~4.5e15 n.eq/cm<sup>2</sup>



## **CMS Global Timing Concept**





#### **Precision Timing Fast Scintillating Crystals - Performance**

- Nominal geometry: I I x I I mm<sup>2</sup> + 4x4 mm<sup>2</sup> SiPM
  - with semi-constant slant thickness of ~4 mm
- Timing correction for hit position necessary if SiPM small compared to Crystal
  - Left plot: over whole tile with and without impact point correction
  - Right plot: test beam through SiPM fiducial
- Pursuing crystal bar double ended readout or large-area-sparse SiPM to mitigate



#### **BTL ASIC - TOFHIR**

- ▶ BTL ASIC will be tailored version of commercial TOFPET2 chip
  - TOFPET2 with sensor package RMS already 37 ps
  - goal is 25 ps for sensor package (achieved at testbeam with NINO)
- Reasons for the difference are understood
  - Pulse slew rate (amplifier configuration) and TDC contribution
  - Radiation hard design in parallel TSMC 130nm







#### Low Gain Avalanche Detectors - Irradiated Performance

- Over most of ETL area present LGADs achieve 30ps resolution, the issue is only at the highest  $\eta$
- Measured < 45 ps at  $3el5 n_{eq}/cm^2 (1.5x max fluence at highest <math>\eta$ )



- ▶ LGAD can deliver < 40 ps timing resolution for entirety of HL-LHC
- New optimization studies with latest LGADs indicate further improvements



#### **ASICs for LGADs**

- ALTIROC = ATLAS LGAD Timing ROC
  - Submission of a chip (TSMC130 nm) in December 2016 (MPW CERN/IMEC), received at the end of March 2017
  - 20 ps timing measurement with LGAD sensors for ATLAS HGTD
  - Test chip bondable to sensors of 1x1 mm² and 2x2 mm²
  - High speed preamp (1 GHz) + TOT + constant fraction discriminator (20 ps)

Will evolve to 400 ch chip

#### **CMS Endcap Timing ASIC**

Last stage of measurements uses DLL + passive elements to achieve finest binning.

Most precise elements, resistors and capacitors, are radiation tolerant.

96 channel bump-bonded chip, currently targeting larger capacitance









### Mitigating Confusion from Pileup

- Pileup tracks are incorrectly associated to primary vertex of interest
- Timing significantly reduces "effective" vertex line density
- Recover performance in several observables
- Provide additional robustness against changes in beam configuration
- Similar arguments apply in the case of forward-only coverage



### **Lepton Isolation with Timing**

- Timing cuts remove pileup tracks from lepton isolation cones
- Reduces dependence on pileup density (also centrally, see backup)
- ▶ 60% improvement in background rejection for constant signal efficiency using pertinent working points



#### **B-Tagging with Timing**

- Precision timing rejects spurious secondary vertices
- Significant improvements for working points at constant signal efficiency or background rejection (see backup)
  - Gain in efficiency amplified in multi-particle final states (ε^N)
- Removes pileup-density dependence in b-tagging







## (di-) Higgs Acceptance Improvement at CMS with MTD

Object-level acceptance improvements compound in multi-object final states

|                                                                |                     |         | <b>.</b>                          |
|----------------------------------------------------------------|---------------------|---------|-----------------------------------|
|                                                                | Signal increase (%) |         |                                   |
| Channel                                                        | BTL                 | BTL+ETL | Relevance                         |
| $	ext{HH}  ightarrow 	ext{b} \overline{	ext{b}} \gamma \gamma$ | 17                  | 22      | Higgs self-coupling               |
| $HH \rightarrow b\overline{b}b\overline{b}$                    | 14                  | 18      | Higgs self-coupling               |
| $H \rightarrow ZZ \rightarrow 4l$                              | 19                  | 26      | Mass, width, spin+parity,         |
|                                                                |                     |         | differential cross sections, EFTs |

Corresponds to 18-26% increase in effective integrated luminosity





Large impact on barrel region since physics signature is central



#### Forward B-tagging based channels at ATLAS with HGTD





## Higgs to Di-photon Vertex Tagging



- Unique capability to match photon time to vertex time + position
  - CMS ECAL is non-pointing, but has photon timing capability
  - 50% of events additionally require MIP timing to find correct vertex
- Identifies photon vertex: improves di-photon mass resolution by 25% and also  $H(\gamma\gamma)$  signal significance



### Pileup Jet Rejection with MTD and HGTD





 HGTD timing used to reject outliers when calculating energyin-vertex

$$R_{p_{\mathrm{T}}} = \frac{\sum p_{\mathrm{T}}^{\mathrm{trk}}(\mathrm{PV}_{0})}{p_{\mathrm{T}}^{\mathrm{jet}}}$$

- 4x improvement in rejection at significantly improved efficiency
- MTD Timing cleans tracking information provided to PUPPI\* to better identify neutrals from pileup
  - No impact on signal jet efficiency
  - Largest impact in the endcaps
- ▶ 20% (barrel), 40% (endcap) reduction in pileup jet multiplicity



#### **MET Performance**

- (PUPPI) MET resolution improves 15% at 200PU
  - Recovers 140 pileup performance
- MET tails reduced 40% for MET > 150 GeV
- Improved performance for searches in high pileup







#### **Reconstruction of Neutral LLP Masses**

- By measuring particle velocity from primary and secondary vertices, we can reconstruct a peaking variable for LLP searches
  - Model independent: can either reconstruct mass or mass splitting depending on how velocity related to model structure
- Timing layers allow resonance confirmation in these searches



### **Searches for Long-Lived Particles**

 MTD with central acceptance vastly improves acceptance for massive long-lived particles (LLP)

• Ability to measure
decay time improves
search reach by orders
of magnitude at highest
masses

Massive particles yield central signatures



MTD provides a new capability for these searches

 $\Lambda$  [TeV]



#### **Performance Summary**

 MTD is a key addition that improves the full range of HL-LHC era physics

| Proposal         |  |
|------------------|--|
| <b>Technical</b> |  |
| xamples in       |  |

| Signal               | Projected Physics Impact                              |
|----------------------|-------------------------------------------------------|
| $H 	o \gamma \gamma$ | 25% improvement in statistical precision on xsecs     |
| •                    | ightarrow couplings                                   |
| VBF $H 	o 	au	au$    | 20% improvement in statistical precision on xsecs     |
|                      | ightarrow couplings                                   |
| HH                   | 20% increase in signal yield/decrease in running time |
|                      | ightarrow consolidate searches                        |
| EWK SUSY             | 40% reducible background reduction                    |
|                      | ightarrow +150 GeV mass reach                         |
| Long-Lived Particles | Peaking Mass Reconstruction                           |
|                      | ightarrow Unique sensitivity and discovery potential  |

- HGTD similarly benefits the forward performance of ATLAS
- Novel capabilities derived from LLP secondary vertex timing
- ▶ B-tagging improvements significantly improve rare signal acceptance



#### **Concluding Remarks**

- MTD and HGTD provide benefits to whole physics program
  - Preserves the performance of Particle Flow and PUPPI in CMS
  - Improved performance of many forward observables in ATLAS
  - Increases effective luminosity: +20% for di-higgs (CMS)
  - Recovers search performance in MET tails
- Benefits equivalent up to additional 2-3 years of luminosity
- New capabilities for long-lived particle searches
- Sensor technologies underlying detectors becoming mature
- Timing TDRs for ATLAS and CMS coming in the next year



## **Backup**





# Lepton Isolation Performance







# Optimal |dz| cut for Isolation (no timing)



## Barrel

#### CMS Phase-2 Simulation Preliminary (14 TeV) $Z \rightarrow \mu\mu$ , $t\bar{t}$ . $\langle PU' \rangle = 200$ Enon-prompt p\_>20 GeV, $|\eta|$ <2.4 dz = 5 mm 0.08 dz = 2 mmdz = 1 mm0.06 dz = 0.5 mmdz = 0.2 mm0.04 0.02 8.8 0.85 0.9 0.95 $\epsilon_{\text{prompt}}$

# Endcap



|dz| < Imm cut outperforms significance-based in both barrel and endcap.



# Optimal |dz| cut for Isolation (no timing)





|dz| < Imm is uniformly the best choice as a function of eta, even in the most central barrel



## CMS Phase-2 Tracker dz Resolution





dz resolution of low  $p_T$  muons dominated by multiple scattering. 0.7 GeV tracks (most important for isolation) have dz resolutions of 100s of microns in the barrel.