Overview of the ASIC Developments for the Muon Upgrades

General reasons for Muon upgrades

Detectors :

Most Muon systems use a form of gas detector. Most of these detectors are expected to remain into Phase 2.

Some however need to be replaced, particularly in regions of significantly high rate. In these regions, new detectors with higher rate capabilities and finer granularity are being brought in.

Performance:

Increased particle rates and pile-up require more selective triggering to keep the trigger efficient and the trigger rate within control.

This (in most cases) requires improved tracking for pT selection and fake trigger rejection.

New ASICs and electronics systems are required primarily for : Higher Data Volumes, Higher Trigger Rates, Faster and smarter data processing to reduce/control trigger rate Longer trigger latencies,

The CMS Muon Upgrade

GEMs: LS2 : GE1/1 LS3 : GE2/1 & ME0 ASIC development is the VFAT3 chip

The CMS Muon Upgrade

Existing Muon System composed of: Drift Tubes (DTs) Cathode Strip Chambers (CSCs) RPCs.

Electronics upgrades in all systems

- DT : FPGA based plus GBT(lpGBT)
- No dedicated ASIC design
- LS2; single sector prototype
- LS3 main upgrade

CSC: upgrade for increased rate & LV1A latency. FPGA based, no dedicated ASIC design. GBTs to be used.

LS2 on chamber electronics

LS3 off chamber electronics

RPCs : Link board replaced, FPGA based LS3 : Possible R3/1 & R4/1 iRPC for high rate operation, using the Petiroc ASIC+ GBTs

4/25/18

P. Aspell

ACES 2018

5

GEM Electronics System for GE11

72 super-chambers, 144 chambers 24 VFAT3 / chamber 1 Opto-hybrid v3 / chamber 3GBT, 1 SCA / chamber 3 VTRx, 2 VTTx / chamber

	VFAT3	GBTx	VTRx	VTTx	SCA	СТР7
GE11	3456	432	432	288	144	12
Spares	400	50	50	30	20	1
Test setups	480	60	60	40	20	2
Total	4336	542	542	358	184	15

GE21 and ME0 will be very similar to GE11 in terms of electronics system architecture.

VFAT3

VFAT3a

VFAT3 trigger and tracking binary architecture

Designed specifically for GEM detectors in CMS Phase 2 operating conditions.

VFAT3a fabricated in 130nm CMOS in 2016 – Tested in 2017, satisfying spec.s

Approx. 15 man years of design work

Design Team : CERN : P.Aspell, M.Dabrowski, INFN Bari: F. Loddo, G. De-Robertis, F. Licciulli, LUT: H.Petrow, AGH: M. Idzik (AGH coordination) 4/25/18 P. Aspell

VFAT3b submission July 2017

Modified design to upgrade SRAMs for radiation SEE

from ARM single port SRAM IP to dual port IP cells Limit substrate/well contact spacing to 15um

Modification to CFD biasing

Production launched at same time.

VFAT3 measurements

VFAT3a measured in 2017 VFAT3b measured in 2018

VFAT3b updates for new SRAM blocks and corrected biasing of CFD all working correctly.

Fully operational Satisfies CMS phase 2 specifications Suitable for GE1/1

4/25/18

Feature	Parameter	Notes
No of channels	128	129 incl. test channel
Signal charge polarity	+ & -	Suitable for Silicon and gaseous detectors
Programmable Gain & Shaping time	yes	3 modes of gain 4 modes of shaping time
Comparator	Arming + CFD	CFD for reducing time walk
Rate per channel	Up to 2MHz	
Trigger Path granularity	Fast OR of 2 channels 320Mbps	8 slvs output
	Full granularity, DDR 640Mbps	Trigger-less operation with full granularity readout
Data Path : LV1A Latency Programmability	25ns to 25.6us	SRAM1 depth = 1024 CMS spec.=12.5us
Consecutive triggers	Yes	Allows multiple time slot readout per LV1A
Max LV1A rate	Up to 2MHz	CMS spec = 0.75MHz
Zero suppression	Yes	Many options for ZS in the data packet Used to increase trigger rates > 2MHz
Directly compatible with GBTx and LpGBT	Yes	Includes HDLC addressing and adapts to slvs CM differences
Calibration, Bias and monitoring	integrated	Controlled via Slow Control (SC), internal ADC
Channel Thresh. Trim	Yes	Reduces threshold spread
Temperature measurement	Yes	Internal & external temperature measurement read through SC
Radiation tolerance	lonising SEE	Up to 10s of Mrads, Triplication and SEL tolerance design

VFAT3 Key Features & Results

Measured Parameter	Measured Result		
Peaking times (programmable)	15ns, 25ns, 36ns, 45ns		
Gain/Linear range (programmable) Gain mV/fC & linear range to 10% amplitude reduction in fC	HG 48 mV/fC 9.5 fC MG 16 28 fC LG 8 55 fC		
ENC	HG: 620e + 33e/pF MG: 1072e + 30e/pF		
Timing walk (CFD)	< 0.4ns (signal range 3fC to 30fC)		
Input capacitance range	0– 80pF		
Internal temperature measurement	20 to 110 degrees		
Power consumption (Vdd = 1.2V)	Sleep Mode : Analog = 74mA, Digital = 50mA Run Mode : Analog = 139mA, Digital = 67mA		

Full results to be shown in June ESE seminar

CMS GEM Electronics - Developing prototype systems

Proved GEM operation and allowed the development of an experiment level DAQ system

- System V2, for prototypes
- V2a System 2015
- V2b System 2016
- VFAT2 , GEBv2 , OHv2

VFAT2 hybrids

V2 System Development Cosmic stand operation

V2b Slice Insertion of 5 V2 super-chambers in CMS

V3 Slice, V3 superchamber inserted 1/3/2018

- System V3, for GE11
- V3a system 2017
- V3b system 2018
- VFAT3a/b, GEBv3 , OHv3

Wafer Processing

Hybrid design and development (LUT & NCP)

V3 System Development Cosmic stand operation ESR done Jan 2018

Assembled super-chamber Ready for V3b slice installation

P. Aspell

ACES 2018

Chamber assembly with VFAT3 HV3b hybrids

Assembled super-chamber Ready for V3 slice installation

> V3 Slice, V3 superchamber inserted 1/3/2018

VFAT3 status

LS2:

VFAT3b production for GE11

Engineering run and GE11 production run is complete

Wafer processing (thinning and dicing), currently being done.

VFAT3 Hybrid (HV3b)

Production fabrication currently be done

Hybrid assembly (SMD mounting, chip mounting, bonding, QC)

2 companies chosen with 50 % of the production each

Pilot runs of 70 pieces in each company – currently being done

Full production assembly to follow.

LS3:

GE21 and ME0

VFAT3 will be packaged – tendering currently ongoing

VFAT3c ? – VFAT3b could be used for GE21 and ME0 however a modification to the front-end to optimise for the higher detector capacitance of GE21 is desirable, depends mostly on designer availability.

The Atlas Muon Upgrade

ASIC development in the NSW & MDTs

The new Small Wheel (nSW)

To improve rejection of fake triggers ie rejecting candidates not pointing to the interaction vertex.

MDTs

Precision tracking in phase 1.

MDTs integrated into the trigger during Phase 2 to help pT selection.

Upgrades required to operate at high rate and with increased trigger latencies.

The New Small Wheel (NSW)

- Precision tracking chambers: MDT for $|\eta| \le 2.5$, CSC for 2.5 $\le |\eta| \le 2.7$ in SW
- Trigger chambers: RPC in the barrel, TGC in the endcap

NSW: Rejection of "fake" triggers not pointing to the interaction vertex.

In LS2, the NSW wheel will replace existing small wheel in the endcap Muon system

The NSW will have Micromega and small strip TGC (sTGC) detectors

Front End for both New Small Wheel Technologies

- Both Detectors participate in the trigger, as well as providing precision * measurements following a Level1 trigger
- Imposes severe demands throughout the project and in particular on the Front End *
- Provides charge and time measurements as well as Trigger Primitives for both *
- This let to the design of a multifunction System on Chip (SOC) *
 - Four independent Data Paths
 - 3 ADC/channel, 192 total per chip
 - One of the most complex ASIC designed for an HEP experiment

Very large signal range

MM signal charge = 60-70 fC spread over 4-5 strips

sTGC charge of several pC

NSW Front-End Electronics Architecture

Same front-end chip for MM and sTGC

Custom ASIC Developments :

• **VMM** – 64ch front-end chip for sTGC and MM.

 1^{st} channel "hit" /bx, address sent to the **ART** (Address in Real Time).

Amplitude sent to TDS

Addr, ampl., and time tag sent to ROC

- **ART** Concentrator of 32 VMM "hit" addresses, forms data packet for GBT.
- **TDS** Trigger Data Serialiser. Collects pulse height information from VMM.
- **ROC** L0 readout + e-link interface to GBT.

IN

VMM3 Architecture

SETT. SETB CKART 64 channels logic TOT. TEP. PET. akab 6-b ADC ۰ shaper peak ٠ → D1/flag **10-b ADC → D2 4**X mu 8-b ADC PDO time LO **HFO** 12-b BC MO addr. trim registers CADT ٠ ατκίο DAC Gray coun registers pulser bias • temp soffreget logic

VMM is the common front-end ASIC for both MM and sTGC.

It provides trigger primitives, signal amplitude and time information.

Technology : 130nm GF 64 Channels

- **Trigger primitives**
- Amplitude peak detector
- Time to Analog converter (TAC) 3 ADCs/channel 6b, 10b & 8b,

3 output modes

- 2 phase analog (acquisition/readout)
- Continuous mode (@ 1MHz)
- L0 mode

Integrates Full ATLAS DAQ/Trigger Functionality

ÎCEBC

► LVDS

source V.Polychronakos BNL

ÎCAP

ANALOG

SVS

prompt

12V CMOS

RR . SDO ick cs

The Road to VMM3a VMM1→VMM2→VMM3

VMM1 2011-12 50 mm ² 500k FETs (8k/ch.)	VMM2 2013-14 115 mm ² 5M FETs (80k/ch.)		VMM3 pre-production 2015-16 130 mm ² 10M FETs (160k/ch.)	
 mixed-signal 2-phase readout peak and timing neighboring sub-hysteresis few timing outputs 	 nixed-signal -phase readout continuous fully-digital readout continuous fully-digital readout continuous fully-digital readout current-output peak detector increased range of gains three ADCs per channel FIFOs, serialized data with DDR serialized ART with DDR additional timing modes 		 mixed signal + digital continuous simultaneous readout SEU-tolerant logic deeply revised front-end for TGC (2nF, 50pC, fast recovery,) L0 handling digital core SLVS and new config. interface new reset control and fast reset timing at threshold 	
March 2012	ITAR additional function	September2014 is and fixes	 timing ramp optimization pulser range extension 	
M3a includes O	NLY fixes, improve	ements	 ART synchronization 32-channel skip additional functions and fixes 	
		V. Polychron	akos, BNL/ATLAS	

VMM3a Submitted 9/17 Being tested now

4/20/18

VM

ACES 2018

source V.Polychronakos

$\Lambda / \Lambda /$

Design Parameters/Features

Dual Polarity

- Adjustable Gain (0.5, 1.0, 3.0, 4.5, 6.0, 9.0, 18.0 mV/fC)
- Adjustable peaking Time (25, 50, 100, 200 ns)
- Address in Real Time (Fast OR in effect <u>Mmegas</u> Trigger)
- Prompt (6-bit) Amplitude of all 64 channels, Time-over-threshold, time-to-peak selection (sTGC Trigger)
- Peak Detector, Time Detector (<1 ns)</p>
- Discriminators with sub-hysteresis
- Neighbor enable logic (channel to channel and across ICs)
- Sparse readout with smart token passing,
- 10-bit DAC global threshold, 5-bit channel trim, built-in calibration pulser, channel mask, analog monitor of selected channel, temp. sensor, Band Gap Reference, LVDS digital IO

Power consumption $\sim 1W$

ENC as a function of input capacitance <1fC even with fast shaping (25 ns) and large input capacitance (200 pF) Solid lines calculations, points are measurements

Time resolution as a function of amplitude ~ ns resolution and time walk

Test Beam Spatial Resolution, Inclined Tracks

ACES 2018

source V.Polychronakos

VMM

Status, Plans, Schedule

- GF 8RF 130 nm CMOS, 15x8.4 mm² die
- Packaged in 400 ball (1 mm spacing) BGA
- Received and evaluating samples of the Engineering run a month ago (4th iteration)
 - Issue with 10-bit ADC differential non-linearity, effective resolution 7-8 bits adequate for both Detectors
 - No show stoppers
- 175 more wafers to be received mid-May
- Expect to issue order for the final production (350 wafers) shortly after we finish testing

40 000 chips required (mostly for micromegas, 2 million channels)

The ATLAS MDT Upgrade

(Amplifier Shaper Discriminator)

Regions of design modifications for ASDv6

Feb-13th 2018 ASD Status for MDT Readout Vidyo Phase-II Upgrade R. Richter 8 channel chip Peaking time = 12ns Multiplexed digital LVDS output ADC is measuring time information 4/25/18 P. Aspell

ASDv6: testing bare and packaged chips

adapter ASDv6 bond wires

Cu-frame for heat dissip.

routing to solder pads

board

(a)

Tests in the Lab:

۲ (b) prototype of final mounting

(a) chip directly bonded on an experimental test board (b) chip bonded on an adapter board to be mounted on a mezzanine (c) easy series testing w. socket, chip covered w. protective resin All PCB layouts by Varuzhan Danielyan, MPI (c) socket for fast testing

Feb-13th 2018 ASD Status for MDT Readout

Vidyo Phase-II Upgrade R. Richter

22

ASDv6 a and ASDv6 b

submitted	aug	201'
subm. alternati	ive design:	
	nov	201
received	dec	201'

received	dec	2017
first tests	jan	2018
fully analysed	april	2018
FDR	may	2018
engineering run	nov	2018
PRR	june	2019
full production	aug	2019

8

The ALICE Muon System

The ALICE Muon System:

Composed of 3 sub-systems :

The Muon Forward Tracker (MFT) The Muon Chambers (MCH) The Muon Identifier (MID)

> All have ASICs All target LS2

MFT

ALICE Muon Forward Tracker

MFT:

Adds vertexing capabilities. Extends precision measurement of QGP properties to the forward region.

Several discs of monolithic silicon pixel sensors

Uses the same sensor and pixel technology as the ITS.

Alpide techinical detail in the ACES 2018 talk : Monolithic Pixel Developments (Thanushan Kugathasan)

ALPIDE : MONOLITHIC ACTIVE PIXEL SENSOR FOR ALICE TRACKERS

The Muon Forward Tracker in a nutshell

- WHAT : Vertexing for the Muon Spectrometer (-3.6 < η < -2.45).</p>
- HOW : 5 lightweight disks (0.7% X₀), 2 detection planes per disk.
- > WHEN : LHC upgrade phase 1.
- CHALLENGE : 920 silicon pixel sensors (0.4 m²) assembled and wire-bonded on 280 aluminum flexible printed circuits (FPC).

TowerJazz CMOS 180nm technology

- ➢ Deep P-well → Full CMOS within the pixel.
- Thick (18µm 30µm), high resistivity epitaxial layer (>1kΩ·cm)
- > 50 μ m sensor \rightarrow Low material budget.

Status : 1200 wafers produced (option up to 1400 wafers)

The MIP sensor : ALPIDE

- **In-Pixel signal processing** 29 x 27 μm² pitch
 - $C_{det} \approx 2 \text{ fF} → \text{ Noise}_{th} \approx 12 \text{ e}$ -
 - Analog : Preamp + Discri (40 nW)
 - Digital : 3 memories + zero suppr.
- > Event driven : no HIT, no power
 - o Continuous or Triggered mode
- Reticle size ASIC : 524 kpixel, 30x15 mm²

Source: F.Guilloux, W. Snoeys, L. Musa

ALICE Muon Chambers

wire chambers

SAMPA front-end ASIC

(SAMPA also used for the TPC)

- 19000 Front-end cards
- 600 Read-out cards

SALTRO : 16 channel demonstrator of the Front-end + ADC + DSP per channel

SAMPA is an evolution of the the SALTRO architecture

Front-end + ADC + DSP / channel

Recent advancement in ADC performance make this architecture attractive for future applications.

Digital Processor

BCF1	Removes systematic offsets that may have been introduced due to clock noise pickup etc. The SRAM is used for storage of baseline constants which can then be used a look-up table and subtracted from the signal.
TCF	Tail cancellation: Compensates the distortion of the signal shape due to undershoot.
BCF2	Baseline correction 2: Reduces low frequency baseline movements based on a moving average filter.
ZS	Zero suppression: Removes samples that fall below a programmable threshold.

-1⁹-

SAMPA

TPC Mode	MCH Mode
 Negative Input charge Sensor capacitance: 12 – 25 pF Sensitivity: 20mV/fC & 30mV/fC Noise: ENC ≤ 580 e⁻@ 18.5pF Peaking time: ~160 ns, return to Baseline return: <500 ns 	 Positive input charge Sensor capacitance: 40–80 pF Sensitivity: 4mV/fC Noise: ENC ≤ 950 e- @ 40pF 1600 e- @80pF Peaking time: ~300 ns Baseline return: <550 ns
 Design in Brazil 	

- 22 wafers = 5500 ASICs, Oct, 2017, 1000 ASICs successfully tested
- production started, March 2018

TSMC CMOS 130 nm, 1.25 V technology

- 32 channels, Front-end + ADC + DSP
- package size $\leq 15 \times 15 \text{ mm}^2$
- ADC: 10-bit resolution, 20 MS/s, ENOB > 9.2
- DSP functions
 - pedestal removal, baseline shift corrections, zerosuppression
- read-out via up to 11 e-links at 320 Mbps
- Power < 32 mW/channel (Front End + ADC)

FEERIC

(Front-End Electronics Rapid Integrated Circuit) for RPC detectors of ALICE Muon IDentifier (MID)

Goal: slow down MID RPC aging after LS2

- FE with amplification
- total MID : 21k ch, 2624 ASICs, 2324 FE cards

Technology	AMS CMOS 0,35 μm		
Size, packaging	8 mm ² , TQFP 64		
Channels per ASIC	8		
Polarity	+/-		
Linear dynamic range	Q < 1 pC		
Noise (<u>r.m.s</u> .)	< 2 fC (simu for ASIC only)		
Power dissipated	60 <u>mW/ch</u>		
Power supply	3 V		
Time jitter (<u>r.m.s</u> .)	50 ps for Q=200 fC (simu for ASIC only) 300 ps for Q=200 fC (ASIC on FE card)		
Time walk	<1 ns for 100 <u>fC</u> < Q <1pC		
Output format	LVDS, 23 ± 2 ns		
Gain	~1 mV/ <u>fC</u>		

Gain (top) and response time (bottom) measured for ASIC on FE card

ALICE Muon Identifier

MID:

RPC Detectors

Electronics upgrade allows operating RPCs with lower gain to extend the RPC lifetime due to aging.

Uses common ALICE backend

FEERIC:

Transimpedance front-end + zero crossing discriminator + LVDS output

ASIC production of 5000 pieces done in 2015

Installation planned for LS2, 2019.

Source: Samuel Manen (IN2P3) 29

The LHCb Muon Upgrade

Existing Muon System composed of:

5 Stations M1-M5: Each station divided into 4 regions (R1-R4) Detectors : MWPC GEM (R1 of M1) 20 different types of detectors, with different time response Different dimensions: M1 (24x20cm2), M5 (151x31cm2)

Main Reason for Upgrade :

Upgrade electronics chain to process trigger information at 40MHz instead of the previous 1MHz using the GBT chip set.

M2-M5 detectors remain M1 to be removed.

Ref : CERN-LHCC-2013-022 ; LHCB-TDR-014

Figure 4.1; (a) Side view of the LHCb Muon Detector. (b) Station layout with the four regions R1⁴R4 indicated.

ACES 2018

Upgraded Muon Readout Scheme

Upgraded Muon System Architecture

nODE replaces old ODE.

LS2 Electronics Upgrade Goals:

Leave FEE unchanged and upgrade the rest of the readout chain to allow all data to be shipped out in real time.

Move backend to the surface.

<u>nODE board</u> Receives LVDS signal from each channel

nSync:

Main upgrade ASIC design for clock synchronisation and time measurement.

Optical transmission : Via GBT chip set.

Fast and slow controls share the same bi-directional links.

Separate links for data. No distinction anymore between trigger and tracking data.

Optical links, ~ 350m@ 4.8Gbps

TELL40 boards at the surface link to PCIe

ACES 2018

nODE to upgrade from 1MHz to 40MHz readout Based on the nSYNC ASIC

Technology: UMC 130nm Production underway through IMEC

LS2 installation 150 nODEs with 4 nSyncs/board

nSYNC

2 hit links simplex

> 2 TDC links simplex

nSYNC

48 input channels Synchronisation to 40MHz bx TDC time measurement for sub bx time measurement Data packet creation **Zero suppression**

Summary of the Muon ASIC developments covered in this talk

ASIC	Experiment	Muon System	Detector / Detection type	Upgrade	Function
VFAT3	CMS	GEMS	GEM	LS2: GE11 LS3: GE21, ME0	GEM front-end Tracking & Trigger
VMM	ATLAS	NSW	MM, sTGC	LS2	MM and sTGC front- end Trigger & tracking
ART, TDS, ROC	ATLAS	NSW	MM, sTGC	LS2	VMM information processors
ASD	ATLAS	MDT	DT	LS3	Front-end
TDC	ATLAS	MDT	DT	LS3	Timing of ASD output
ALPIDE	ALICE	MFT	Monolithic silicon	LS2	Vertexing - fine spatial resolution
SAMPA	ALICE	MCH	Wire chambers	LS2	Frontend + ADC + DSP
FEERIC	ALICE	RPC	RPC	LS2	Front-end + digital output
nSYNC	LHCb	MWPC/GEM	MWPC	LS2	Synchronisation, time measurement

Thanks

Additional Slides

GEM V3 Electronics System

Assembled together and working as a system, end 2017

CMS DT

- The OBDT (On-Board electronics for Drift Tubes) module is a simple and low power board (the estimated power is half of the present)
- The fundamental part is a Flash-FPGA (Microsemi PolarFire) implementing the Time-to-Digital-Converters
- Flash based FPGA: radiation harden by construction (adopted also by HCAL)
- The integration factor can be higher than the present one (up to 240 channels/board)
- Tests show the implementation of several tens of channels with 1-ns resolution is possible
- A prototype with the not final components is going to be produced in 2018 (LpGBT, VTRx+ and FEASTUP not yet available)

- \circ ~ The GBT chipset is used for clock distribution and for controlling the board
- The OBDT module will perform slow control (FE access, monitoring, test pulse, RPC connection)
- o Data will be sent to backend directly from the fast SERDES (10Gbps) of the FPGA
- VTRx+ optical link between UXC and USC for both data-path (x4) and primary slow control (x1)
- Redundancy in up/down stream links is foreseen

250 minicrates (one per chamber)
3-4 OBDTs per chamber
Total number of OBDTs ~ 850
1 lpGBT/OBDT therefore ~ 850 lpGBT total (GBT if lpGBT is not available)
Feast (perhaps) 7 / OBDT, therefore 0 or 6000

Source A.Trossi

PetiROC for the CNAS iPPC proposal

Petiroc ASIC

for the CIVIS IRPC proposal	Channel 31	Parameter	Value
		Number of Channels	32
	Vib_time 6-bit DAC Positive or Adjustment R5 latch Time to amplitude IT Tomach	Signal Polarity	positive or negative
CMS muon upgrade at high eta	inguitive inguit pa Time measurement ADC ramp	Sensitivity	Voltage input amplifier, 200 Ohm matching
72 chambers to equip area with 1.8 < $ \eta $ < 2.4	Preamplifier	Timing Resolution	$\sim 18~ps$ RMS on trigger output (4 photoelectrons injected)
→ Add track hits in muon reconstruction → Search for Heavy Stable Charge Particle		Dynamic Range	160 fC up to 400pC
η 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.1 θ 64.3 78.67 7.31 67.7 62.5 57.5 52.8 64.6 44.3 46.4 38.8 η θ α α α α α α α α α α α α α α α α α α α	Charge measurement ADC rame A	Packaging & Dimension	TQFP 208 (28x28x1.4 mm) TFBGA 353 (12x12x1.2mm)
C 7 Weed 1 Weed 2 C C C C C C C C C C C C C C C C C C		Power Consumption	6 mW/channel
	V charge	Inputs	32 analogue inputs, No external component required Inputs DC level adjustable
Image: transformed magnet I	Bandgap Temp sensor 10-bit DAC Vth_B E ToR32 0R32_charge ADC ramp 8-bit delay box for hold generation bold ToR32 0R32_time Common to the 32 channels 10032 0R32_time	Outputs	32-channel trigger outputs ASIC level general trigger (OR of all channel) ASIC level second level general trigger (OR of all channels) Charge measurement (10 bits) Time measurement (10 bits)
C. Combaret RPC2018 , feb 19-23rd 2018	240 - 220 - 200 -	Internal Programmable Features	Common trigger threshold adjustment and 6bit-DAC/channel Shaping time & gain of the charge shaper 32 x 8bit-input DAC over 1V span
	180 160 140 120 120 100 100 80 60 0 100 100 100 100 100 100		
Christophe COMBARET, IPNL – CNRS IN2P3	1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 V _{in} (mV)	71111	

P. Aspell

ACES 2018

38

NSW Trigger and Readout

Same front-end chip for MM and sTGC

Custom ASIC Developments :

- **VMM** 64ch front-end chip for sTGC and MM.
- 1^{st} channel "hit" /bx, address sent to the ART

Amplitude sent to TDS

Addr, ampl., and time tag sent to ROC

- **ART** Concentrator of 32 VMM "hit" addresses, forms data packet for GBT.
- **TDS** Trigger Data Serialiser. Collects pulse height information from VMM.
- **ROC** L0 readout + e-link interface to GBT.

- 4 custom ASICs: VMM, ROC, TDS, ART
- 4 custom on-detector boards: L1DDC, ADDC, MM FEB, sTGC FEB,
- 2 custom on-rim boards: pad trigger, router (plus a GBT board for configuration)
- 2 custom on-USA15 boards: sTGC trigger processor, MM trigger processor

March 9, 2016

Junjie Zhu - University of Michigan

FPGA & Board Developments:

- $\mathsf{sTGC-Rad-tol}\ \mathsf{FPGA}\ \mathsf{board}\ \mathsf{for}\ \mathsf{routing}\ \mathsf{and}\ \mathsf{optical}\ \mathsf{transmission}$
- Pad Trigger-Tower coincidence selection of strips
- 6 Trig Proc —finds tracks, rejects tracks not pointing to vertex. ATCA FELIX — Interface to industrial standard; PCIe

Sources : R.Richter, L.Levinson, J Zhu, S.Zimmermann, V.Polychronakos

ACES 2018

WOS Pixel Sensors for the ALICE ITS and Muon Tracker

pixel capacitance 2.5 fF (@ V_{bb} = -3 V) \Rightarrow MIP signal ~ 50mV

IB: 50μm thick OB: 100μm thick

130,000 pixels / cm² 27x29x25 μ m³ Charge collection time <30ns (V_{bb} = -3V) spatial resolution ~ 5 μ m max particle rate ~ 100 MHz / cm² fake-hit rate: < 10⁻⁹ pixel / event

Further detail in the ACES 2018 talk : Monolithic Pixel Developments (Thanushan Kugathasan)

P. Aspell

Radiation levels in ALICE

Element	r	Z	TID	$1{\rm MeV}$ neq	$>20 \mathrm{MeV}$ had.
	(cm)	(cm)	(krad)	(cm^{-2})	$(\rm kHz/cm^2)$
ITS L0	2.2	[-13.5, 13.5]	646	9.2×10^{12}	1600
ITS L1	2.8	[-13.5, 13.5]	387	6.0×10^{12}	1000
ITS L2	3.6	[-13.5, 13.5]	216	3.8×10^{12}	500
ITS L3	20	[-42.1, 42.1]	13	5.2×10^{11}	28
ITS L4	22	[-42.1, 42.1]	9	5.0×10^{11}	24
ITS L5	41	[-73.7, 73.7]	6	4.6×10^{11}	10
ITS L5	43	[-73.7, 73.7]	4	4.6×10^{11}	9
MFT D0	2.5	-50	395	6.7×10^{12}	1100
MFT D1	2.5	-58	392	6.4×10^{12}	1040
MFT D2	3.0	-66	767	5.9×10^{12}	760
MFT D3	3.5	-72	427	4.3×10^{12}	520
MFT D4	3.5	-76	541	4.8×10^{12}	560
FIT1	5	-80	181	3.0×10^{12}	280
FIT2	5	340	103	1.4×10^{12}	200
TPC In	79	[-260, 260]	2.1	3.4×10^{11}	3.4
TPC Out	258	[-260, 260]	0.3	5.2×10^{10}	0.7
TRD	290	[-390, 390]	0.4	4.8×10^{10}	0.54
TOF	370	[-370, 370]	0.13	2.6×10^{10}	0.26
EMC	430	[-340, 340]	0.06	1.5×10^{10}	0.02
MCH S1	19	-536	0.42	4.2×10^{11}	3
MCH S2	24	-686	0.19	1.4×10^{11}	1
MCH S3	34	-983	0.14	1.6×10^{11}	0.9
MCH S4	45	-1292	0.18	3.0×10^{11}	1
MCH S5	50	-1422	0.91	2.5×10^{11}	0.7
CTP Rack	600	-1295	4.8×10^{-3}	7.8×10^{9}	0.03

ALICE does not have significant radiation levels to worry about.

Table 3.1: Total Ionising Dose (TID) and 1 MeV neq hadron fluence for 10 nb^{-1} Pb-Pb + 6 $pb^{-1}pp$ + 50 $nb^{-1}p$ -Pb collisions (including a safety factor 10) as well as high energy hadron fluence for 50 kHz Pb-Pb collisions (including a safety factor 2).

ALICE Readout Architecture

Read-out architecture

ALICE has a common back-end architecture for all sub detectors