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Effect of luminosity increase fror Phase 2
CMS Main readout

• APDs will still be used over HL-LHC
• Larger leakage current due to irradiation
• ×10 increase in noise would dominate

resolution at HL-LHC

• Mitigation strategy
• Cool supermodules from 18°C to 9°C
• Implement shorter pulse shaping (new 

front-end)

• Necessary to maintain electron/photon 
resolution at right level for physics
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Effect of luminosity increase fror Phase 2
CMS Trigger path

• Spikes are large isolated signals due to hadrons interactions
within APD volume
• Will dominate L1 trigger rate at HL-LHC if unsuppressed
• Improved spike rejection needed (99.9% @ 5GeV) to
maintain trigger sensitivity
• Digitization at 160 MHz and fast shaping to do signal shape
discrimination
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Upgraded CMS ECAL Front-End architecture

• TIA (Trans Impedance Amplifier) 
architecture, 50 MHz BW, bi-gain output

• Focus on fast timing : 30 ps @ 30 GeV
• Requires 160 MHz sampling
• Commercial IP ADC Core from S3 (12 bits, 

10.6 ENOB)
• Both TIA outputs are converted
• Gain selection based on a time window
• Direct connection to transceiver (lpGBT & 

VTRx++)
• Simple digital data compression for 

bandwidth optimization

Data compression and output format

• 32 bits word size, to minimize bandwidth use for samples
close to baseline (coded on 7 bits or less)
• Two baseline formats for non filled words
• Empty fields with alternating 1/0 pattern to maintain
link synchronization
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CAlorimeter Trans-Impedance Amplifier (CATIA)

• Regulated Common Gate stage
• Reduced input impedance (1 Ohm)
• Compatible with high input capacitance (200 pF)
• Bandwith of 50 MHz
• Trans-impedance value given by RTIA

Without bandwidth limiting
With 50 MHz lowpass filter included
Cadence simulation results
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CATIA Development plan

• VFE board with TIA implemented
as discrete components
• Used in test-beam in June 2017
• Readout with 14 bits COTS ADC

• VFE board with TIA implemented as 130 nm TSMC ASIC
• Test-beam in October 2017
• Two TIA implementations

• 2.5V (thick oxide), in principle less rad-tol
• Better analog performance:
• dynamic range, linearity, SNR)

• 1.2V (standard)
• Readout with 14 bits COTS ADC

Microphotograph of the CATIA
ASIC 6



Test-beam performance

30 ps resolution achieved at 25 GeV (HL-LHC start)
30 ps resolution achieved at 60 GeV (HL-LHC end)

• Minimal (fast) pulse shaping
• Exploit fast rise time of PbWO4 scintillation signal
• 160 MSPS sampling is needed to simultaneously
resolve pulse leading edge (timing) 
and pulse maximum (energy)
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CATIA Radiation tests
Bandwidth Rise time

2.5V CATIA version is OK and chosen as baseline
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CMS ECAL Quantization scheme

• 15 bits analog dynamic range
• Not achievable with low-cost,
low-power, high speed available ADCs

• Dual gain system with two 12 bits ADC,
• Gains 1 and 10
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Commercial ADC IP

• Exists with slightly different parameters in different
technologies

• Chosen for CMS, adaptation underway to 65 nm 
TSMC (CERN validated technology)

• Radiation hardening done at design level on the IP 
by S3
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ADC/serializer test chip under development within
CMS 

• Contract signed with S3 
• 30 March 2018

• Verilog, abstract, timing view
• 30 May 2018

• Final GDSII
• 6 September 2018
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CMS Calorimeter Very Front-End Schedule

• CATIA
• Finalize prototyping during 2019

• Two MPW runs

• Engineering run in 2020

• ADC
• Finalize prototyping during 2019

• Two MPW runs

• Engineering run in 2020
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Scope and motivation of the HL-LHC upgrade
of the ATLAS Tile Calorimeter
• Detector components (absorber, scintillating tiles, fibers and PMTs) 

do not need replacement

• Readout electronics has to be replaced
• Present digital readout is not compatible with HL-LHC architecture

• Electronics is ageing (time+radiation degradation). Some parts are no longer 
produced

• Need to provide full granularity digital data to level 0/1 triggers at 40 MHz

• Present on-detector electronics designed for max rate of 100 kHz
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Upgraded readout architecture

• All digital data transmitted off-detector at 40 MHz

• Simpler architecture

• Improved flexibility for off-detector data processing for L0/L1 trigger
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3-in-1 Front-End signal processing
• Optimized version of the present version of the 3-in-1 board, option 

chosen to be implemented for the upgrade

• Seven pole shaper circuit (only passive components)

• Transforms the PMT pulse into a gaussian pulse, amplitude 
proportional to PMT signal total charge Upgrade digitization : 12 bits (COTS) ADC

instead of 10 bits
Compatible with present analog trigger (no
longer used for Phase-2)
Can be installed before HL-LHC upgrade

15

• Validated performance prototypes
• Slow integrator channel (used for Van Der Meer scans) has
higher sensitivity than other options



Front-end ATLas Tile Circuit (FATALIC) development

• Faster shaping than 3-in-1 board

• Amplification, shaping and digitization (In-house 40 MHz 12 bits, 
pipeline design) in one unique ASIC

• 130 nm GF technology
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QIE signal processing development

• PMT current integrated in a capacitor bank

• Capacitors multiplexed in time to allow operation

at 40 MHz without deadtime

• Current splitter to achieve 17 bits

dynamic range

• Radiation tolerant design

• QIE boards have mostly point to point

signal connections and power distributions

• Signal processing done on Front-End board
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Testbeam results

• 3-in-1 and QIE system show good performance

• Signal to noise ratio improved with respect

to present system

• Muon signal well visible

• FATALIC option shows higher noise
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Context of ATLAS Lar Phase-2 upgrade

• Analog dynamic range : 16-17 bits
• Keep present analog processing philosophy : preamplifier + CR-RC2 bipolar shaping. Add adjustable shaping time constant
• Change digitization scheme from three gains/12 bits ADC to two gains/14 bit ADC (12 bits ENOB)
• All data digitized at 40 MSPS, sent off-detector for all bunch crossings full granularity available for trigger decision
• No on-detector pipelines
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Readout system architecture

• Analog trigger sums
• Replaced in Phase-1 by digital trigger board (LTDB),
with improved granularity
• Shaped signal stored in analog memories
• Digitized and sent to back-end after L1A decision

• LTDB still present, as Level-0 trigger and coarse
readout system
• Shaped signal digitized on the fly and sent directly to
Back-End

Present readout system Phase-2 readout system
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• New designs to allow for real time digitization at 40 MSPS

• Reduction of power dissipation by a factor of  10

• No longer analog memory on Front-End boards

• Two designs under development
• 130 nm TSMC CMOS LAUROC chip
• 65 nm TSMC CMOS HLC chip

• Common test-bench, to allow reliable performance comparisons

• Technical requirements
• Capacitance [nF] 0.25 (0.5) 1.3 (2.5)
• Termination [Ω] 50 25
• Current ranges [mA] 0.06 & 2 0.6 & 10
• Maximum ENI [nA rms] 60 200
• Peaking time 10-100% [ns]    ~ 40
• Max non-linearity [%]              < 0.2 (0.5)
• Trimmable termination [Ω]    ~ +/-2.5

ATLAS LAr analog Front-End R&D

21ATLAS LAr FEB 128 ch 490 mm×410 mm 0.7 W/ch



LAUROC development (130 nm CMOS)
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HLC architecture :Fully-Differential FE Amplifier with Passive 
Feedback
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Test setup
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LAUROC and HLC preamp features
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LAUROC and HLC performance

• LAUROC0 noise 10% higher than HLC1
• Will be reduced by 30% in next iteration

• HLC1 and LAUROC0 non-linearity within specs
• Some range limitations for LAUROC0, understood and will be corrected for next iteration

• Submission planned in 130 nm CMOS (PA+Shaper) in September 2018
• Final technology choice will be done early 2019 26



In-house 14 bit COLUTA ADC design

65 nm TSMC technology

Effective 4 gain system, can be considered as 2-gain if DRE well calibrated
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COLUTA SAR and DRE design
• SAR design
• 40 MHz, two step design (v1):

• 5-bit first stage + 8-bit second
stage with 1-bit interstage redundancy

• Improved design in progress (v2):
• 6-bit first stage+10-bit second
stage, with 2-bit interstage redundancy

• Designed to be able to run at 80 MHz to
have some margin
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• DRE concept
• Need to resolve 2 bits:
• Internal gain selection (g=4) with 12-bit
accurate output for sampling



COLUTA test chip design and submission

• First test chip (COLUTA651A)
submitted May 24 2017

• ADC blocks (DRE, SAR) +
Serializer, digital control, SLVS
• 2 mm × 2 mm
• QFN 72 package
• Received September 15 2017
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COLUTA test board

• Socket mounted chip, or directly soldered
• Various test modes
• Digitize DRE analog output with 16 bits
commercial ADC on board
• Read out SAR, either direct input or through DRE
• SEU test structures
• Measured 12.7 ENOB on 16 bits commercial ADC
with a sine wave signal.
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Building blocks performance
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• SAR preliminary results with 20 MHz clock show good 
performance

• Improved by calibration
• Investigating capacitor matching specification

• With 40 MHz clock performance is degraded
• Confirmed in simulation
• Dependance on digital and analog supply
voltage observed, following up as possible solution

• DRE tested with commercial ADC,
1× and 4× gain channels separately
• Testing with 20 MHz clock shows good performance
of each channel separately, 



DRE+SAR testing
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COLUTA first irradiation test
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Radiation test results
TID
Compare ENOB before/after irradiation (no calibration applied)

SEUs/SEE
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SEUs tagged by
histogramming ADC output
during a slow ramp



Next COLUTA (v2) iteration

35

Submission in May 2018
Two-channels design
ePort interface with lpGBT chips : 16 bit, 640 MHz (16 ADCs to 11 lpGBTs)
Three readout formats : Calibration, Raw, Normal (calibration applied)
Use of 40 and 640 MHz clock from lpGBT (no PLL)
New serializer at 640 MHz



COTS ADC or IP ADC

• Some COTS ADC have been evaluated under irradiation

• Radiation tolerance of Texas Instruments ADS5294 promising (Octal 14 bit 
ADC, 180 nm technology, 1.8V, 60 mW/channel at 40 MSPS)

• Hardening design w.r.t. SEU would be too expensive

• Using an ADC IP is an intermediate solution between COTS and in-house 
design

• Combines expertise of ADC industrial designers with possibility to configure 
design to ATLAS needs

• Hard to find 14-bit low power 40 MSPS IP, 12-bit higher speed easier

• CMS 12 bit IP (10.6 ENOB) a good candidate, to be complemented with
digital filtering to reach 14 bits (12 bits ENOB)
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Architecture of possible 14 bit ADC based on 
160 MHz ADC IP block 
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ENOB evaluation on sine waves

• Simulate sine waves of varying frequency, Vpp=4096 LSB, add 1 mV RMS white noise
• Gain is 1 bit with Bessel filters at low frequency, and gain is lower at high frequency.
• Increasing filter order improves a bit at high frequency
• FIR filters behave better at high frequency (due to better sharpness of spectral response)
• Can gain 1.1 bit ENOB with ×4 oversampling, up to 15 MHz
• Can gain 1.4 bit ENOB with ×6 oversampling (240 MSPS), up to 15 MHz 38



Simulation with calorimeter signals
Measure signal over noise improvement after filter

• S/N is improved by more than 2
• Can be improved up to ×2.5 (1.3 bits)
• FIR filters a bit better than Bessel

• ×4 oversampling + digital filtering after 12 bits/10.2 ENOB 
ADC allows to gain more than 1 bit ENOB

• Specific case : 60-taps FIR, flat-top, Fc=15 MHz gains 1.3 bits 
10.2 goes up to 11.5

• Could gain 0.7 to 1 additional bit by averaging several ADCs
running in parallel, if power consumption allows
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ADC development plans

• COLUTA
• Next submission planned in May 2018

• One iteration per year until 2020

• IP ADC option
• Use CMS test chip (under development) to evaluate actual performance of IP

• Digital filtering implemented on FPGA to check ATLAS performances can be
reached (mid-2019)

• If evaluation is positive, reuse CMS IP to design an ATLAS chip
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Conclusions

• Developments are building upon experience gained with present
systems

• Need to maintain present physics performance with high pile-up

• Analog processing based on similar designs as present systems
• Newer technologies

• More integrated, less power-hungry

• Challenging ADC designs needed, several options pursued
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