

Overview of the Calorimeter Readout Upgrades

A. Straessner on behalf the ATLAS and CMS Calorimeter Upgrade Groups

ACES 2018 CERN April 24-26, 2018

General Concepts

Calorimeter Electronics Upgrades

- Motivation for calorimeter electronics upgrade:
 - Higher trigger rate of 0.75 1 MHz and larger event buffers (> 10 µs)
 → improved trigger system for high pile-up
 - Improved radiation tolerance (2-10 kGy) and system longevity where necessary
 - Improved timing measurement where possible
- General concept: move buffers and pipelines off detector and read out at 40 MHz
- New additional timing detectors: Lindsay Gray Tuesday 16h30
- New CMS high-granularity endcap calorimeter: Paul Rubinov Wednesday 14h30

- Radiation tolerant ASICs and Commercial-Off-The-Shelf (COTS) components:
 - signal amplification and shaping
 - ADCs, TDCs
 - optical links with 5-10 Gbps
- Trigger, Timing and Control (TTC) distribution
- Power distribution for HV and LV

- High-bandwidth, low-latency signal processing with FPGAs
- Data buffering in FPGAs or onboard memory
- High-bandwidth interfaces to hardware trigger and to network based trigger/DAQ systems

Phase-0/I Upgrades

LHC Long-Shutdown 2: 2019-2020

Phase-I Upgrades: ATLAS LAr Supercells

- COTS analog components
- ASICs: 130 nm CMOS 4-bit pipeline + 8-bit SAR ADC, * 250 nm Si-on-Sapphire link-on-chip
- 31 LAr Digital Processing Blades for signal filtering, energy calculation, data buffering
 - ATCA carrier blades equipped with 4 FPGA advanced mezzanine cards

- Board production is being prepared installation and commissioning in LS2
- Complex installation: removal of all front-end boards and installation of new baseplane
- System will remain during HL-LHC running

• demonstrator run in $2017 \rightarrow$ full HE already upgraded in shutdown 2017/18

- full HB will be equipped in LS2
- HE will be replaced by HGCAL in LS3

Phase-II Upgrades

LHC Long-Shutdown 3: 2024-2026

CMS Barrel ECAL Front-End

- Trans-impedance amplifier with low-pass in 130 nm TSMC:
 - about x3 improved timing resolution compared to CR-RC preamp-shaper (backup)
- ADC sampling rate 160 MHz optimal for time resolution and spike rejection
 - commercial ADC IP block integrated in dedicated ASIC in 65 nm TSMC

CMS Barrel ECAL Front-End

- 2448 Front-End cards transmit ADC data and distribute clock and control signals
- ADC data compression on statistical basis is being studied:
 - "long" data transfer for energies above ~6 GeV = 7 bit
 - only for a small fraction of events (10⁻⁴-10⁻⁵)

- Total data rate per FE card: 13 bit x 160 MHz x 25 = 52 Gbps
 - \rightarrow lossless data compression by factor 2 to fit into 4 x 8.96 Gbps = 4 lpGBT links
- Best compatible with 4 Tx + 1 Rx VL+ format

CMS Barrel ECAL Off-Detector

- 2 FPGAs per BCP
- 300 crystals per FPGA
- 15 x 16 Gbps for L1 trigger primitives (10 bit E_T, 1 bit spike, 5 bit time per crystal)
 → 3060 trigger links total
- 43 kb / event for crystal readout with 20 samples + 8 kb / event for trigger primitives
- total DAQ bandwidth 4 x 16 Gbps / FPGA

- BCP demonstrator:
 - ATCA blade with 2 Xilinx Ultrascale FPGAs and SAMTEC Firefly transceivers
 - 2 ZYNQ FPGA mezzanines for board control, ATCA system interface and Embedded Linux Mezzanine

- New HV system for APD to cope with radiation damage after 3000 fb⁻¹
 - increased dark current to 100 μ A expected and possible shorts of APD pairs
 - increased bias voltage by +30 V necessary

Parameter	Legacy HV system	HL-LHC HV system	
Output voltage range	0–500 V	0–600 V	
Programmable setting step	1 mV	1 mV	
External calibration	$\pm 20 \text{ mV}$	$\pm 20 \text{ mV}$	
DC regulation at load	$\pm 20 \text{ mV}$	$\pm 20 \text{ mV}$	
DC stability at load (over 90 days)	$\pm 70 \text{ mV}$	$\pm 70 \text{ mV}$	
Low freq. noise at load ($f < 100 \text{ KHz}$)	$\pm 20 \text{ mV}$	$\pm 20 \text{ mV}$	
High freq. noise at load ($f > 100 \text{ KHz}$)	$\pm 20 \text{ mV}$	$\pm 20 \text{ mV}$	
Operating temperature at supply	15–40 °C	15–40 °C	
Current limit	15 mA	20 mA	
On and off ramp rate	2–50 V/s	2–50 V/s	
Current measurement (from $1\mu A$)	5%	5%	

Overview of the Calorimeter Readout Upgrade - ACES 2018

- 36 readout boxes x 252 channels = 9072 channels
- 36 x 32 optical links at 5 Gbps \rightarrow 18 ATCA Barrel Calorimeter Processors (BCP)
 - 2 FPGAs per BCP prepare trigger primitives and readout data

subdet	FE daq links	FE trigger	sub-event	BE leaf	BE	DAQ links	notes
	IIIIKS	IIIIKS	Size	Carus	crates	IIIIKS	
PxTk	1000	0	1.6	100	12	48	
SiTk	1500	13500	0.5	300	33	132	$(^{7})$
ECAL	8000	2000	1.2	100	12	48	$\binom{8}{}$
HCAL	1000	1000	0.2	100	12	48	$(^8)$
HGCAL	8000	8000	1.2	160	18	72	
DT	0	3000	0.1	60	8	16	$(^{9})$
CSC	0	600	0.2	12	2	8	$(^{9})$
GEM	500	1000	0.05	30	12	12	
RPC	1000	1000	0.06	40	5	20	
Other	1000	1000	0.1	20	3	12	
Total	25612	27500	5.0	922	117	416	

Table 3. CMS Phase-2 detector projected data links and event size summary.

- What will happen with HB µTCA hardware?
 - Phase-I HB μTCA boards will be used in in ATCA adapter boards to equip the Forward HCAL (HF)

- Scintillator tiles will not be exchanged \rightarrow upgrade of front-end and off-detector electronics to cope with
 - higher trigger rate (1-4 MHz), extended data pipelines (35 μs)
 - higher radiation levels
- New mini-drawer concept will allow better accessibility of electronics for maintenance
- Replacement of most radiation exposed PMTs
 - Hamamatsu R11187 more robust, higher quantum efficiency
 - 768 out of 9852 PMTs (8%) will be replaced

• Full calorimeter information will be read out at 40 MHz \rightarrow full granularity trigger input

ATLAS TileCal: 3-in-1 Front-End

- Baseline: 3-in-1 front-end card on main board
- shaped and digitized PMT pulse for energy reconstruction:
 - 7-pole passive LC shaper
 - low-pass differential analog drivers
 - 2 gains for 17 bit dynamic range
- charge integration amplifier (10-21 ms) for Cssource calibration and luminosity monitoring: digitized at 50 kHz with 16-bit ADC

- Main board equipped with:
 - 12-bit COTS ADCs (LTC2264-12)
 - Altera Cyclone FPGA for control

ATLAS TileCal: Serialization and Data Processing

- Daughterboards on front-end:
 - 2 Xilinx Kintex Ultrascale+ with triple redundant logic for serialisation
 - SEE tests to be done
 - tests with Kintex-7 show 1-2 non-recoverable errors per month at HL-LHC
 - 2 SFPs for optical transmission at 9.6 Gbps with Forward Error Correction
 - GBTx chip for clock and control

- Off-detector:
 - Tile Preprocessor (PPr)
 - Tile TDAQ interface (TDAQi)

ATLAS TilePPr and TileTDAQi

- 32 ATCA carrier blades each with 4 Compact Processor Modules (CPM)
- 4096 up-links at 9.6 Gbps and 2048 down-links at 4.8 Gbps
- CPM Advanced Mezzanine Card:
 - 32 input links / FPGA = 8 mini drawers
 - digital filter and energy reconstruction
 - 12 DSPs / channel
 - data buffering until L0/L1 accept
 - >2 Mbit memory
 - candidate FGPA Xilinx Kintex Ultrascale
- TDAQi Rear Transition Module:

- preparation of digital trigger sums \rightarrow trigger Feature EXtractor (FEX) modules
- full granularity data after noise threshold (>2 σ) \rightarrow Global Event trigger processors
- D-layer cells for muon trigger reconstruction

	Receiver	Granularity (η x φ)	Number objects per PPr	Resolution	Link bandwidth	Available bits per link and BC	Bits per link used (data)	Objects per link	Link count
	eFEX	0.1 x 0.1	192 TTs	13 bits	11.2 Gb/s	224	208	16	12
	jFEX	0.1 x 0.1	192 TTs	13 bits	11.2 Gb/s	224	208	16	12
UALO	gFEX	0.2 x 0.2	16 TTs	13 bits	11.2 Gb/s	224	208	16	1
	Global		48 cells	15 bits	14.4 Gb/s	288	184	8	6
MUON	RPC	D-cells	40 cells	15 bits	11.2 Gb/s	224	210	14	3
MOON	TGC	D-cells	36 cells	15 bits	11.2 Gb/s	224	180	12	3

ATLAS TileCal: PMT HV

Q=256 pC (test 8)

Q=2900 pC (test 11)

- HV regulators moved to radiation-free environment, each PMT connected individually (100 m cable)Q=1.7 pC (test 1)
- active HV dividers, improved grounding scheme
- low HV ripple and noise (few mV RMS), stable HV

ATLAS LAr Calorimeter Electronics Upgrade

- Send all data off detector at 40 MHz \rightarrow flexibility of the trigger system
 - accept rate 1-4 MHz, 35 µs pipelines
 - full granularity calorimeter information available to trigger
- Preserve noise performance as today: non-linearity 2 ‰, detectable MIP signal
- Keep electroweak physics in same gain range (H,Z,W,...):
 - 2-gain readout and 14-bit ADC for 16-17 bit dynamic range

- 1524 new Front-end boards (1 FEB2 / 128 channels)
- 372 LAr Signal Processors (LASP)
- 130 electronic Calibration Boards
- New FE powering
- Phase-I supercell readout remains

- 22 IpGBT Tx links per FEB2 for data transmission \rightarrow 33528 fibers
- 2 IpGBT Tx/Rx link pairs per FEB2 for individual clock and control \rightarrow 6096 fibers

ATLAS LAr Calorimeter: Off-Detector

- Baseline links per FPGA:
 - 88 IpGBT input links to process 512 cells
 - 2-3 DAQ links, up to 27 links for trigger FEX
 - 4 links for Global Event trigger @ 25 Gbps
- Main tasks:
 - digital signal filtering and energy+time measurement with active pile-up correction
 - preparation of trigger primitives: energy sums and energy-ordered cell energies
 - real-time baseline correction if needed
- \rightarrow 36 DSPs/channel and 151 Mbit of memory / FPGA
- Ongoing R&D on full-size ATCA blades
 - evaluate Altera/Intel Stratix 10 SX / MX: integrated processor or large high-bandwidth memory
 - Samtec Firefly transceivers
 - cooling is a challenge
- TTC distribution to FEB2 → evaluate solution as separate TTC blade (less powerful FPGAs needed)

LASP Testboard

SATLAS 💥 ATLAS LAr Calorimeter: Calibration Board

- Pulses are injected at the level of the LAr calorimeter electrodes
- To cover signal currents up to 10 mA, a 7.5 V calibration pulse needs to be injected → HV-CMOS technology (X-FAB XT018)
- Baseline: 16-bit DAC in 130 nm TSMC and current mirror to HV-CMOS HF switch
- Like to have ideal exponential pulse shape at all amplitudes → find balance between ringing and parasitic signals

- Switch and DAC test chips have been submitted and first results expected soon
- Radiation tests are in preparation

- All new front-end electronics rely on a similar powering concept
- Radiation and magnetic field tolerance is required for on-detector power devices
- Main ACDC converters for 200 V 400 V
 - CMS EB: Maraton PS 400 V
 - ATLAS: 200 V (Tile) and 280 V (or similar, LAr)

LV power scheme

- LVPS from 200V-400V to 12 V or 24 V or 48 V or 10 V
 - most DCDC converter developments in collaboration with industry (CAEN, Wiener)
 - located in better accessible area \rightarrow long(er) power cables \rightarrow noise? small diameter
 - redundancy:
 - 2 or 3 modules including 1 spare to be turned on remotely/automatically
 - power bricks running in parallel
- on front-end 2.5 V 7.5 V local voltage
 - PoL converter and linear regulators

- All main calorimeters will be read out at 40 MHz motivated by new trigger systems
 - CMS ECAL includes precision time measurement
- Different front-end electronics because of: different preamp/shaper solutions, different optimal sampling rate, different radiation requirements
- Common hardware will be used for data transmission and detector control:
 - IpGBT, GBT, VL+
 - ELMB++
- Possible common solutions for LV powering:
 - PoL regulators, LVPS, ACDC main converters
- Would be nice to have:
 - radiation tolerant optical links beyond 10 Gbps → fewer FE fibers, better match to payload, more demanding FPGA requirements in data processing and buffering

- More ACES contributions on calorimeter electronics:
 - Preamplifier/Shapers and ADC for Calorimeters: Philippe Schwemmling Wednesday 15h30
 - Power Requirements and Developments for Calorimeters: Sergei Lusin Thursday 9h30
 - Thursday noon/afternoon: all on ATCA boards and infrastructure

	TID (kGy)	NIEL (n _{eq} /cm²)	SEE (h/cm²)
ATLAS LAr	2.3	4.9 x 10 ¹³	7.7 x 10 ¹²
CMS EB	10		~10 ¹³
ATLAS Tile	0.2	6 x 10 ¹²	1.5 x 10 ¹²

• discrete-component trans-impedance amplifier

Q is the number of electrons APD ($\epsilon \approx 0.1$) *F* is the excess noise factor *M* the gain of the APD

 $\sigma_Q \sim sqrt(leakage current x integration time)$

CMS TIA performance

Figure 3.9: Microphotograph of the CATIA ASIC (left), and schematic view of the TIA architecture (right). See text for explanations.

Figure 3.13: Left: MGPA++ simulation. Spike pulses are in blue, and scintillation pulses are in green. Right : MGPA++ preamplifier, shaper, and differentiator arrangement.

Õ.25

0.3

0.35

0.4

0.45

0.5 0.55

0.6 0.2

- on-chip spike detection not robust enough in all amplitude ranges
- off-detector spike identification prefered

0.8

0.6

Figure 3.15: Peak-hold/shaper ratios for spikes and scintillation pulses at 2 GeV, for 0, 10, 100 μ A detector leakage currents.

0.4

0.3

Overview of the Calorimeter Readout Upgrade - ACES 2018

0.6

0.5

0.2

Figure 3.16: Timing accuracy for the shaper (left) and the peak-hold (right) circuits, for detector leakage currents from 0 to 100 μ A.

Table 3.2: ADC requirements.

Specification	min	typ	max	unit
Sampling frequency	160			MS/s
Resolution	12			bit
Supply voltage	1.08	1.2	1.32	V
Differential input range	± 500			mV
Analogue input bandwidth	70	80		MHz
Slew rate	100			V/µs
Sampling clock jitter		2	5	ps
Power consumption		25	30	mW
Temperature range	-20	8	85	°C
INL		1	1.5	LSB
DNL		0.5	0.9	LSB
ENOB	10.2			bit
SNDR	63			dB
Latency		10		Clock cycles
Calibration time		100		μs
Technology	CMOS 65 nm			
Radiation tolerance (TID)	100	100 kG		kGy
SEU cross section	15 (tbc)			MeV cm ² /mg

 probability for energy value with >6 bit is 2 x 10⁻⁴: baseline bandwith of 2 Gbps/channel can be reduced to 1 Gbps + few Mbps for signal energies

Figure 3.18: Proposed data format.

• L1 trigger primitives: either 16-bit data per crystal or per 5x5 tower

Figure 3.29: Distribution of the number of single crystal trigger primitives expected per event for several crystal E_{T} thresholds and a pileup level of 200 events.

Figure 3.30: Distribution of the number of cluster trigger primitives expected per event for several cluster E_T thresholds and a pileup level of 200 events

CMS ECAL Barrel Calibration

- Energy and timing calibration and inter-calibration needed: new laser system and PiN diode light control system
- Light readout with GSample/s MATACQ chip

Overview of the Calorimeter Readout Upgrade - ACES 2018

PiN