

High Granularity Calorimeter (HGC) Readout

Apr 25 2018

Paul Rubinov

CERN European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

CERN-LHCC-2017-023 CMS-TDR-17-007 27 Nov 2017

Review outcome:

"...the proposed design of the high granularity endcap calorimeter for the CMS upgrade is challenging but is expected to satisfy requirements of the harsh HLLHC running conditions. Continuing R&D and simulation studies are needed to verify and optimize the design choices. "

https://cds.cern.ch/record/2293646?In=en

Physics Driven Basic choices:

Highest (total dose) 10^{16} neq/cm² and around 200 MRad \rightarrow Silicon sensors where dose >3kGy and > 10^{13} n/cm² \rightarrow Scintillator w SiPM readout < 3kGy and < 10^{13} n/cm²

3 types of cassettes:

Very fine grained in the CE-E section every ~1 X₀ in 28 layers double sided with lead absorber
Single sided Si only in the CE-H layer 1-8
Single sided Si+Scint in the CE-H layer 9-24
for total ~101
52 layers in all!

 η range ~1.5 to 3

Physics Driven Choices (cont)

- Radiation is driving choice of Si
 - Cool as much as possible (-30C) to minimize leakage current
 - Still have ~10uA/cm² for 320um Si → need thinner Si for larger fluence regions

Leakage current, capacitance proportional to area, MIP signal NOT proportional to area

Constant term less than 1% REQUIES the we be able to measure MIPs Keep FE noise <2ke to see MIP in 100um Si!

Physics Driven Choices (cont)

- Radiation is driving choice of Si
- Size of the detector / cell size \rightarrow channel count
- Must be kept at -30C \rightarrow Cooling power ~110KW /end cap \rightarrow ~20 mW/ch for all electronics
- Leakage current, capacitance proportional to area, MIP signal NOT proportional to area

CELLS CAN NOT BE >> 1cm² for 300um/200um, 0.5 cm² for 100um

EM showers are not much bigger than 1cm too!

~50pF for all cells

200mm wafers patterned with 192 cells (200/300um) or 432 cells Cell size is quantized – driven by wafer size⁵

But we always knew want small cells and fine segmentation

In the very busy environment, we have fine 4D segmentation: x, y, z, t

2x 80GeV E Photons 3cm apart

H $\rightarrow \gamma \gamma$ with all hits above 12fC projected to the front face of calorimeter (VBF + γ)

Same after removal of hits with $|\Delta t|$ >90ps

CMS HGCAL: a 52-layer sampling calorimeter with unprecedented number of readout channels

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M Si channels, 0.5 or 1.1 cm² cell size
 - Data readout from all layers
 - Trigger readout from alternate layers in CE-E and all layers in CE-H
- ~27000 Si modules (sensor wafers)

Cooling is a fundamental limitation: 110kW per endcap

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers (26 X_0) Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 24 layers, (101)

HGC Electronics: Physics driven requirements

• Noise : ~0.3fC, 2ke⁻

Inter-calibration require isolated cell < 1% constant term requires 3% precision → MUST BE ABLE TO MEASURE MIP

- Shaping: ~20ns, ~50ps timing
- Dynamic range: 0 → 10pC (!) ... it is a calorimeter 16 bit dynamic range for EVERY cell
- Very low power

~10mW/ch for HGROC anal ~5mW/ch for HGROC dig ~5mW/ch for everything else

Multi-gain:

- Carefully considered
- Final decision:
 Time Over Threshold

120kW cooling / 6M chan =20mW/ch

Analog basic idea: ADC for part of range (about 1%)

Dynamic range improves as sqrt(Power), but not for TOT

Т-О-Т

Large energy deposition is INTERESTING but RARE Time-Over-Threshold trades TIME for

Turning on the current source can cause strange effects...

"...democracy is the worst form of Government except for all those other forms... "

At first glance, TOT gives you "free" TOA In fact separate discriminators, separate TDCs

Turning on the current source can cause strange effects...

"...democracy is the worst form of Government except for all those other forms... "

At first glance, TOT gives you "free" TOA In fact separate discriminators, separate TDCs

Final HGROC architecture:

HGROC: Targeting 130nm TSMC

- 64ch (for 192 cell sensors)
 72ch (for 432 cell sensors)
 + 2 extra small cells to help w MIP
 + 4 cells to help with common mode
- Dual polarity (needed for scint)
- ADC (10 bit @ 40 Mhz) 0-100fC
- TOT (12 bit) 100fc → 10pC (<1% occ)
- TOA (10 bit) ~50ps for Qin > 10fC
- Linearized and summed trigger output every xing logarithmic, ~3% resolution 5gbps / HGCROC
- DAQ readout on L1 accept up to 1MHz readout full resolution ADC/TOT, TOA zero suppressed ~1/3 MIP 512 xing buffer
- 320MHZ TTC link
- I2C control for all parameters

CMS

Final Readout architecture: two paths

Cells are summed by 4 (for 192) or 9 (432) into Trigger Cells \rightarrow FP (4+4) format Trigger data must flow every xing (40MHz) – good resolution, good segmentation (every other layer in the CE-E, every layer in the CE-H)

Individual cells are readout with full resolution and TOA on L1 accept Full resolution, full segmentation

HGROC DAQ path All cells/ all info above 0.5MIP Only on L1 accept (1 MHz) 1 elink / HGROC at 1.28gbps 3 (6) elinks/sensor (1 per chip)

HGROC trig path 48TC/ sensor module (3 or 6 FE) 8bits FP for every TC, every 25ns 4 elinks / HGROC at 1.28gbps 12 elinks/sensor at 1.28gbps

HGROCv1 \rightarrow in hand, being tested

- 7x5 mm²
- 224 pads
- 32 ch + 1 SWGPA (ch33)
- 8 blocs of 4 ch + digital
- Analog on top
- Bias, DLLs, CKs in the middle
- DACs, REFs at the bottom
- Analog and digital probes
- Bias accessible on pads
- Several bias tunable by DAC
- Slow control separated
- Substrate noise coupling reduction
 - Two separated Deep-Nwell underneath analog and mixed channel
 - High resistive substrate between analog, mixed and digital parts

Analog and Mixed channel: HGCROC v1 (130nm TSMC)

Input DAC: leakage compensation over +/- 10µA to 300nA accuracy (30 mV preamp output DC shift)

Cf = 0,1 0,2 0,4 0,8 fF Cf_comp = 0,1 0,2 fF Rf = 25k, 100k, 1M

itot: 6bits global setting, 80μA max, 40μA default

Vth_tot: 100mV – 1,2V dynamic range, 7bits global (0;1,2V;9mV), 5bits local (20mV;0,625mV)

Single-to-differential shapers, 20-30ns peaking time; gain 2, 3, 4 Vref1: 0–700mV, 7bits global Vref2: 0–700mV, 7 bits global, 5bits ch Vth_toa: 0–700mV, 7bits global, 5bits ch

~4.5mW Preamp/Shaper/Discr + ~same for ADC/TDCx2 Power dissipation @ 1,5V supply

- Vdda (preamp): 1,6mA
- Vdd (tot): 160µA
- Vdd(shaper, toa): 1,1mA

New mixed-signal circuits

• ADC SAR

- Inspired from Krakow design, 11 bit
- 2 TDCs for TOT
 - IC design, 50ps/200ns, based on a ring oscillator
 - OMEGA design, 50ps/400ns, based on a global DLL r
- TDC for TOA
 - CEA-IRFU design
 - 10/11 bit

• PLL

- CEA-IRFU design
- 40MHz input clock
- 1,28GHz running frequency

Imperial College

1

CERN

🥮 London

ÉCOLE POLYTECHNIQUE

mega

Testing now under way

Some things look pretty good

Testing now under way

Some not as expected

Digital example: L1 buffer

Digital part development (130nm) (not in HGROCv1)

- L1 buffer requires memory that is 32 wide by 512 deep for each chanel
- SRAM is "easy" with standard library

2800um 540um

SRAM: 256 x 512, write at 40Mhz, read at 1.5Mhz Area= ~1.5mm², Power=~22mW= 3mW/ch (?!)

CERN group [G. Bombardi, A. Marchioro, T. Vergine] design dynamic memory (20uS retention at 50C minimum)

Power = < 0.4mW/ch (not 3!) , Area= 0.65 mm²

Zero Suppression logic also requires careful attention

The total power allocated to the digital part of HGCROC is 5mW/ch

SRAM

DRAM

CMS

Two paths continued

HGROC trig path 48TC/ sensor module (3 or 6 FE) 8bits FP for every TC, every 25ns 4 elinks/HGROC at 1.28gbps 12 elinks/sensor at 1.28gbps

HGROC DAQ path All cells/ all info above 0.5MIP Only on L1 accept (1 MHz) 3 (6) elinks/sensor (1 per chip)

Trig eLink Concentrator (TrigEcon) (65nm digital ASIC)

Panel (Motherboard) typically connected to 3 sensor modules

Next steps: Moving data out of the sensor, prototype eCons,

The ACTUAL box

All electronics (including optical components) must fit in this space. Fighting to minimize this space while staying realistic.

CINAS /					
	Modules: 432ch:	2 192ch:	1	1086	
Power model for MB	Current per ch in mA	FE analog pwr: eCon pwr :	8.5 4.25	Dig pwr:	4.25
	Other info	lpGBT+ (mA)	750	1	
	Max F	EAST current (A)	32		

Next steps: System testing Mechanical/thermal prototypes

- Work started but much to do
 - Cooling
 - Mechanics and assembly
 - Connectors
- Power distribution (up to 50W per motherboard)
- Bias distribution

Quantities

item	Quantity in HGC	
HGCROCs	100416	
Wafers (Si)	27336	1 per module
Tile Boards (scint)	3960	
Concentrators (both)	15888	2 per Motherboard
Motherboards	7944	
LpGBTs	7944	1 per Motherboard
Slow Control Adapter	7944	1 per Motherboard
Opto TX or RX	31776	1VTRX (3TX+1RX) per Motherboard
Optical fibres	23232	

Eyes on the Prize!

Single unconverted γ in CE-E H- $\gamma\gamma$, both γ in HGCAL reconstructed in r<2.6cm (γ do not convert in TK) \rightarrow insensitive to pileup Pileup 200 Events 350 Щ 60.14 • η = 1.7 γ **+ PU 200** PU = 200Pythia gg \rightarrow Higgs, $H \rightarrow \gamma \gamma$ ----- Ref pu=0 **1.5 <** η^γ < **2.8** r = 26 mm • η = 2 0.12 $p_{\tau}^{\gamma 1}$ >40 GeV ----- Ref pu=0 300 • η = 2.4 0.1 $p_{\tau}^{\gamma 2}$ >20 GeV 250 ----- Ref pu=0 $\frac{\sigma}{M}$ = (1.61 ± 0.02) % 0.08 200 0.06 150 0.04 100 0.02 50 20 40 60 80 100 120 160 180 200 140 ¹³² 134 Μ_{γγ} (GeV) 128 130 122 124 126 120 118 **HGCAL G4 standalone** p_ (GeV) **HGCAL Geant4 Standalone**

G4 simulation used to predict performance of HGCAL in presence of pileup: e/γ resolution

Thank you

- Trigger Concentrator:
 - 36 input elink @ 1.28 (copy from lpGBT)
 - Sum
 - Threshold
 - Sort(?)
 - Max latency 8 xing

= output max ~25gbps to min ~3gbps
About 7500 fibers total in system
Trigger outputs are present only for ½
of the layers in CE-E

Must copy elink blocks / 10gbps blocks from lpGBT And combine them!

- DAQ Concentrator:
 - 18 input elink @ 1.28 (copy from lpGBT)
 - Buffering
 - No maximum latency
- = output 7 x 1.28gbps max to lpGBT via elinks

About 8000 fibers total in system (every motherboard has IpGBT) IpGBT also used to receive and distribute trigger/clock Slow control via I2C and GBT-SCA

1x TX fiber

What is the Expected Performance? Pileup Mitigation using Timing Resolution

Arises naturally from the choice of CE parameters and electronics

Figure of Merit: pileup mitigation (illustrative)

VBF ($H \rightarrow \gamma \gamma$) event with one photon and one VBF jet in the same quadrant,

Plots show cells with Q > 12fC (threshold for timing measurement) projected to the front face of the endcap calorimeter.

News CMSWeek Apr'18 tsv

Serializer and Elink for trigger path

The chip integrates 2 elink transmitter to handle the 64 bits from the trigger path

- □ 4 channels are encoded into 8 bits (with 4+4 encoding)
- \Box 2 variants (fully digital or mixed \rightarrow way the last mux is done)
- Possibility to readout a known frame (set by SC)
- Default is 1,28 Gb/s (640 Mb/s possible)

□ Main specifications:

- Data rate 1,28 Gb/s (internally 640M DDR)
- □ Compatible with LpGBT protocol
- □ Programmable Pre-emphasis (based on Paulo Moreira scheme)
- □ Synchronization pattern on request (in place of trigger data)

Specification description	Value		
Vcm (common voltage)	0,6 V		
Vdiff (differential voltage)	100 to 200 mV		
Pre-emphasis current	0,5 to 4 mA		
Termination load	100 Ω		

CMS

I2C: implementation

□List of direct access I2C registers:

I2C @	Register	Comments
0	ASIC parameter address (LSB)	Indirect @
1	ASIC parameter address (MSB)	Indirect @
2	Data	XIX
3	Data with auto @++	Increment indirect @ after each access
4-7	Tbd (TMR status, parity)	VIL LI STALL

OOT pileup: 50% occupancy (max or typ ?)

CdLT 6Feb18

Module construction

Assembling CE-E: self-supporting cassettes

CE-H is assembled in two steps: absorber material, followed by insertion of cassettes

Final assembly steps: attach CE-E to CE-H, then rotate whole CE to vertical for lowering

Readout Architecture

Concentration Serialization Optical transmission

Q and T digitization 4 (9) cells Trigger Cells

Physical implementation: Scintillator

CALICE HCAL Base Unit 11 full layers assembled, to be tested at SPS May-June. (DESY)

Tile Boards connecting to Motherboard TDR Fig. 8.21

Tile Board TDR Fig 7.27

Back End Electronics: Data path

Back End Electronics: Trigger path

Quantities Back End*

item	Quantity in CMS	
DAQ boards	84	
DTH 1200 Gb.s boards	14	2 per crate
DAQ crates	7	
TPG Boards stage 1	96	56 CE-E, 40 CE-H
TPG Boards stage 2	48	24 per endcap
DTH 400Gb/s boards	12	1 crate
TPG crates	12	