Experience with FC7 Failures

J. Troska
on behalf of the CMS TCDS team
Overview

- Context: CMS TCDS system
- FC7 board overview
- Operational experience & failures
- Failure analysis
- Solution validation
- Summary
Context: CMS TCDS System

- Replaced existing TTC/TCS system during LS1
 - Based on µTCA
 - Increased number of sub-detector partitions
 - Increased flexibility in Trigger Control & Monitoring

- 2 racks, 6 shelves, ~50 AMCs

ACES 2018 | CERN | ©2018 jan.troska@cern.ch | 3
Heart of the system: the FC7 AMC

- Xilinx Kintex XC7K420T
 - 10 Gb/s transceivers
- Jitter Cleaner & ref. Xtals
- 2x FMC connectors (LPC+)

- 4Gb DDR3 RAM (128M x 32b)
- Atmel µC MMC & µSD
 - AMC control & FPGA configuration
- 16-layer PCB

Joint development by:

Imperial College London

CERN
Development & Installation Timeline

- **Project Proposal**: 2011
- **Project Feasibility**: 2012
- **Project Approved**: 2013
- **System Installation**: 2014

Key Events:
- FC7 R0a
- FC7 R0b pre-prodn.
- FC7 R0b prodn.

ACES 2018 | CERN | ©2018 jan.troska@cern.ch | 5
The CMS TCDS system sustained a very high failure rate of AMCs after ~3 months of operation

- Full system failure was in sight within ~1 year!
Operational experience & failures

- The CMS TCDS system sustained a very high failure rate of AMCs after ~3 months of operation
- Full system failure was in sight within ~1 year!
FC7 failure monitoring

- AMC sensors provided diagnostics
 - Board failure accompanied with increased current drawn on FPGA core voltage
- Increased current an abrupt failure
 - within one monitoring interval (1 minute)
Failure Analysis & Mitigation

- Lengthy investigations & continued monitoring did not reveal problem
- Eventually Xilinx agreed to do Failure Analysis on failed FPGAs
 - Xilinx FA: de-lidding & testing including High-resolution IR imaging for thermal emission analysis
 - Schematic error identified - incorrect XADC supply voltage caused EOS failure of config. memory
Failure Analysis & Mitigation

- Lengthy investigations & continued monitoring did not reveal problem
- Eventually Xilinx agreed to do Failure Analysis on failed FPGAs
 - Xilinx FA: de-lidding & testing including High-resolution IR imaging for thermal emission analysis
 - Schematic error identified - incorrect XADC supply voltage caused EOS failure of config. memory

- Simple fix possible with “white wire”
 - Applied to all boards in April 2015
Medium/Long-term mitigation strategy

- All installed FC7s at P5 were replaced with boards that had not been powered at incorrect voltage
 - No guarantee that devices previously operated with EOS would continue to survive
 - Relied on existing spares available within TCDS and made available by other projects
 - Ordered 30 new boards with existing design and immediately applied white wire fix

- Prepared to replace full population with stable production version of FC7 when available
 - FC7 R2 included required voltage fix
 - Need to validate FC7 R2 design very carefully to validate success of the fix!
 - R2 first batch delivered Dec. 2015
FC7 R2 Validation

- QA programme carried out on 5 R2 boards and 1 unmodified R1 board:
 - Temperature Cycling: -40 to +85 °C, 500 cycles
 - Measurements at 100, 200, & 500 cycles
 - High-temperature Operating Life (HTOL): ~95 °C, >500 hrs
 - Lifetime acceleration factor of 54-78 with Xilinx recommended activation energy of 0.7 eV
EOS acceleration?

- As a cross-check, HTOL carried out also with FC7 R1 without white-wire fix
- Failure observed after approx. 300 hrs
- Same failure signature as observed in CMS

- Acceleration factor found to be lower than expected for 0.7 eV activation energy
- Calculated 0.5-0.6 eV, compatible with literature

Had we done this kind of QA up-front, would not have suffered a nail-biting six months waiting for everything to fail...
FC7 R2 Validated

- No significant changes observed in either T-cycling or HTOL tests
- Accumulated 25 device-years of effective operation
- FC7 declared ready for deployment in Feb. 2016
- 17 months after TCDS installation…
CMS TCDS system installed during LS1
 - based upon µTCA system with FC7 AMC

Suffered high-level of in-situ failures after a few months of operation

AMC Sensor monitoring data very useful to track problems

Full device Failure Analysis needed to solve problem
 - We do not have such facilities within the community, must rely on good relationships with vendors

QA programme like the one typically required of the front-end electronics put in place to validate final board revision
 - Should foresee such tests for all custom electronics
 - Even if they are accessible, facing a complete failure of a central system critical to the operation of an experiment is very uncomfortable! Diagnosis always takes time…
 - Must allow time in development plans for this step, which can take several months (longer in case of problems)
Backup
- Device temperature measured in-situ in CMS, take 35 °C as conservative maximum value
- Acceleration factor 90 °C w.r.t. to operation is ×54