Status of the xTCA Common Project

Procurement Framework for ATCA Shelves, Power Supplies and IPMCs

CERN EP-ESE-BE

Vincent Bobillier, Stefan Haas, Markus Joos, Julian Mendez, Sylvain Mico and Francois Vasey
Outline

- Overview
- MicroTCA Status
- AdvancedTCA Status
- CERN-IPMC
- Power supplies
Overview

- **xTCA Standards**: Micro and Advanced TCA

- **Goals**:
 - Powering the user blades
 - Cooling the system
 - Interconnecting the different cards

Status of the xTCA Common Project

- Up to 450W
- Up to 100Gbps (25Gbps / line)

Hardware monitoring
Status of the xTCA Common Project

Overview

Since 2011:
- User support (Controllers, use of the commercial modules)
- Contact with the manufacturers

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
</table>
| 2011 | - Project started
 | - MMC v.1.0
 | - MicroTCA evaluation
 | - AC/DC evaluation |
| 2014-15 | - MMC v.2.0
 | - MicroTCA
 | - Price enquiry
 | - Qualification
 | - Procurement contracts
 | - ATCA evaluation |
| 2017-18 | - 1st CERN-IPMC version
 | - ATCA
 | - Specification
 | - Price enquiry
 | - Qualification
 | - Procurement contracts
 | - AC/DC Power supplies
 | - Specification
 | - Price enquiry |
MicroTCA status

- **Usage of the purchase contract**
 - 65 microTCA crates over 103 (Schroff)
 - Mainly used by CMS
 - Contracts for shelves and DC Power modules

- **Rented at ePool: 3 systems**
 - 3 additional systems are coming soon
 - 3 systems are currently rented

Components

MCH:
- Base module: uTCA standard control
- XAUI fat pipe: 12Gbe switch
- Clock switch
- SFP+: Optical module

PM:
- 600W AC/DC Power modules

Shelves:
- 12 slots full height / double width
- CMS backplane topology
- JTAG Switch interface

26/04/2018

ACES 2018
Advanced TCA status

Specifications
- 14 ATCA slots (400W) with RTM (50W)
- Vertical or Horizontal cooling
- Dual Star or Full Mesh topology
- 40Gbps or 100Gbps backplane
- Bussed IPMB
- 1 Shelf man. included

Timescale

<table>
<thead>
<tr>
<th></th>
<th>Horizontal shelf</th>
<th>Vertical shelf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical specification</td>
<td>Q4 2016</td>
<td>Q4 2016</td>
</tr>
<tr>
<td>Technical evaluation</td>
<td>Q1-Q2 2017</td>
<td>NA</td>
</tr>
<tr>
<td>CERN price enquiry</td>
<td>Q2 2017</td>
<td>Q2 2017</td>
</tr>
<tr>
<td>Select contractor (pre-series)</td>
<td>NA</td>
<td>Q3 2017</td>
</tr>
<tr>
<td>Final qualification</td>
<td>NA</td>
<td>Q2 2018</td>
</tr>
</tbody>
</table>

- ATCA Shelf Procurement contract ready for purchase orders by Q2/Q3 2018
Advanced TCA Status: Selected crate

- Vertical airflow
 - Backplane modification: shelf manager slots
 - Perforated area in top and bottom covers
Advanced TCA Status: Selected crate

- Cooling qualification tests
 - Carried out using load blades (Up to 450W)
 - Measurement at the crate level (out of the racks)

Average delta T. (450W / slots)

- Delta T. = 35 deg. C (specs)

Within the specification

Delta T VS Power/blade (max. Fan speed)

- Temperature (°C) vs. Power / blade (W)
 - Temperature (°C) increases with power (W)
AdvancedTCA Status: Selected crate

- Blade level evaluation

- Fan at max. speed

![Thermal image](image1.png)
33.4 °C

- 150W / zone

- 0W zone - delta T.

- 0W zone

- < 6 deg. C
Advanced TCA Status: Selected crate

- **Power distribution**
 - 6 inputs: max. current per branch of 35Amps
 - Fans are supplied by different branches

Bottom fans

Top fans

26/04/2018

ACES 2018
Advanced TCA Status: Selected crate

- Redundancy and voltage drop
 - Voltage drop measured at 450W

 Voltage drop -48V input

 < 300mv (at 48V)

 Redundancy and distribution successfully checked
Advanced TCA status

- Crate selection:
 - Qualification is ongoing
 - First crate was successfully validated (out of 3)
 - Purchase contract should be ready in late Q2 2018

- Rack evaluation is on going and was presented by Claudio Bortolin
 - Performed by the ATLAS technical coordination team
 - Presentation: https://indico.cern.ch/event/681247/contributions/2929083/

- Advanced TCA at the Electronics pool
 - A set of 2 slots ATCA shelves are available for rental via the ePool.
 - Pentair reference: 11990-707

Crate qualification measurements will be presented in details during the xTCA interest group meeting.
CERN-IPMC

- Role of the Intelligent Controller for AdvancedTCA blades:
 - Monitoring sensors, Controlling the system and Ensuring proper operations

- Adaptation from the Pigeon Point solution
 - DIMM-DDR3 VLP form factor
 - Pinout compatible with the existing LAPP IPMC card
CERN-IPMC

- User customizable features (mainly header files):
 - FRU Information (Device ID, Manufacturer info., Product info.)
 - LAN (MAC address, Default IP, slot specific IP, Gateway, Netmask)
 - Modules (AMCs, iRTM/Non-intelligent RTM)
 - Sensors
 - E-Keying
 - Power sequencing

- Python tools to generate configuration files
CERN-IPMC

- NDA Document
 - Protect Pigeon point against extensive distribution
 - Required only for source code access

Diagram:

- CERN
 - NDA
 - Use condition
 - Git access

- Institute
 - Representative person
 - Developer

Original signature scheme
CERN-IPMC

- NDA Document
 - Protect Pigeon point against extensive distribution
 - Required only for source code access

- New signature scheme
 - Coming soon

- NDA and Use condition merged: simplify the signature process
CERN-IPMC

- Automatic tester and development kit
 - Python script to control the tester available on Gitlab

Diagram:

- Connectors
 - 9 AMC ports
 - 35 User I/Os + 16 IPM I/Os
 - Hardware address, handle switch, LED, etc.

- Shelf manager
 - IPMB-0
 - I2Cs

- IPMC slot
 - Serial, Ethernet, JTAG, JTAG Master

- MMC
- CPLD
- Mgt uC
CERN-IPMC

- Ready to be used
 - About 40 mezzanine cards available
 - Can be purchased and used without NDA signature
 - Not customized but operational

- Already used by a few developers (10 mezzanines sold)

- Fully documented: Hardware and Software guide, Pigeon Point documentations and NDA
 - Software user guide documented on Gitlab (access under NDA)

- 10 additional Tester/Evaluation kits in production
Power supplies

Specifications

- Min output power 11kW
- Max. height: 3RU
- Control module (Ethernet connection)
- N+1 redundancy capable
- 95% efficiency above 30% of the max. load
- Minimum 12 circuit breakers

Timescale

- Technical specification: Q4 2016
- Technical evaluation: NA
- CERN price enquiry: Q3 2017
- Select contractor (pre-series): Q3 2017
- Final qualification: Q1 2018

- Modules for qualification have not been delivered yet ...
 - Pre-series expected by the end of 2017
Power supplies

- **Alternative**
 - Eltek 2U rectifier system, Flatpacks, 7.2 kW (lead time: 12 weeks -> not evaluated yet)

- **Power supplies from the Electronics pool**
 - Delta El. power supply SM52-30, 1.5kW (23.-CHF/month)
 - Delta El. power supply SM60-100, 5kW (84.-CHF/month)

- **Single output module**
 - GE CP3500 1U rectifier system, 12kW (available via several distributors, not evaluated yet)
Summary

- **MicroTCA**
 - Equipments were selected and qualified
 - Purchase contracts are ready and used
 - CERN-MMC is released and used in several systems

- **AdvancedTCA**
 - Shelf manufacturer was selected and qualification is on-going
 - CERN-IPMC is released and start to be used by AdvancedTCA blade designers.

- **Power supplies**
 - The modules have not been delivered yet and alternative solutions are evaluated

- **Next steps**
 - Finalizing the AdvancedTCA qualification process
 - Qualify the 100G backplane for the selected ATCA chassis
 - Finalizing the Power supply selection process
 - Continue to provide user support on xTCA infrastructure and management equipment
Thank you

julian.mendez@cern.ch
Advanced TCA blade cooling

Talk from Francois:

- **A word of caution to backend board designers:**
 - Do not preselect your favorite on-board optics module
 - VL+ is presently considering freezing module type and giving you advance notice
 - Run your optics cool or make it replaceable
 - Running at elevated temperature is possible, but will affect life-time
 - Data from one supplier (T is heatsink temperature)
 - T<50degC will result in <1% wearout failures in 15 years (to which random failures will add ~3.7%)
 - T<57degC will result in <10%

Goal of the evaluation:
- Evaluate whether we can get a “cold” zone or not on an ATCA blade?

Impact of a heated zone on a not heated zone

Optics component shall be placed 2cm away from the FPGAs
Advanced TCA blade cooling

- Placement proposal:
Power supply

- **Guardian (UniPower)**
 - 14 kW max output pwr
 - 11 kW with N+1 redund.
 - Based on 5 pwr bricks
 - Up to 12 CB output
 - Ctrl module (SNMP over eth.)

- **Delta Electronics**
 - 3 Versions can be used:
 - 100Amps @48V (4.8kW) [ePool ref: SM60-100]
 - 30Amps @48V (1.4kW) [ePool ref: SM52-30]
 - 20Amps @48V (0.96kW) [ePool ref: SM60-20]