System-on-Chip (SoC) for Control of ATCA Boards

- Introduction
- Overview of the Use of SoC
- Summary

With contributions from

... many thanks!
Control of Electronics Modules

Control - send control commands:
- e.g. start, stop, pause, reset, etc.

Configuration - load configuration data:
- **Hardware related:**
 - settings of clock, power, and optical modules, etc.,
 - FPGA (firmware) configuration,
 - usually using industry standards like I2C, SPI, JTAG, etc.
- **Run control related, i.e. related to physics/run (which is the functionality implemented in firmware):**
 - Control register and/or FPGA memories, e.g. processing settings, look-up tables etc.

Monitoring - collect monitoring data:
- **Hardware related:**
 - Operational values of hardware, e.g. temperatures, voltages, optical power, etc.
- **Run control related:**
 - Status registers, counters/rates of physics events, data of some selected physics events, etc.

Example: ATLAS

ACES

26 APR 2018

R. Spiwoks
What changes with ATCA?

Legacy systems use **VME**:
Hardware control: CANbus
Run control: Single-Board Computer (SBC) or VME bridge

Today, many new projects use **ATCA**:
Control is oriented towards GbEthernet:
Hardware control:
Blade → IPMI → shelf manager → SCADA
Run control:
Via hub module and base interface, or directly to ATCA blade ...
⇒ **Need a new control strategy!**
IPbus over UDP with FPGA

- IPbus is used with μTCA-based systems developed for the CMS phase-1 upgrade, when there was no real alternative to FPGAs, successfully deployed for L1 Trigger, Pixel, HCAL:
 - Originally developed by University of Minnesota, and now maintained by CMS: based on firmware and software
 - IPbus is a protocol based on UDP. It defines a transaction as a request and response; several transactions can be concatenated in the same UDP packet
 - The FPGA runs firmware which receives IPbus requests, performs read/write transactions with the other (processing) FPGAs, and sends back responses
 - The PC runs run control software which uses a software library (uHAL) with a user-friendly register map
 - The ControlHub software service provides a transparent reliable transport layer over UDP

- IPbus has evolved, and today is a protocol not exclusive to FPGAs and which can run over different physical media, including UDP+ControlHub, TCP, SPI, PCIe
Alternative to FPGA: System-on-Chip

System-on-Chip:
Processor system + programmable logic, “CPU and FPGA”

→ **Xilinx Zynq:**
- **Zynq SoC:** ARM v7 (32-bit, 1-2 cores)
- **Zynq UltraScale+ MPSoC:** ARM v8 (64-bit, 2-4 cores)

- **Processor system (PS):** like CPU, multi-core ARM processors with memory and peripherals, e.g. GbEthernet, I2C, etc., can be run “bare-metal” with Xilinx software or using an operating system, e.g. Linux

- **Programmable logic (PL):** like FPGA, can interface to the processor FPGAs, using Xilinx AXI Chip2Chip protocol
Using a System-on-Chip

- Use a System-on-Chip (SoC):
 - The **processor part runs software**, communicates with the experiment run control system and performs read/write transactions with the peripherals, i.e. for hardware control,
 - the **programmable logic provides** read/write transactions *with the other FPGAs*, i.e. for run control
- The SoC can be used in connection with a PC running all the application software *and the SoC is “relatively dumb”*, or it can be use like the PC itself or like the SBC in VME *and be “relatively intelligent”*
Overview of Use of SoC

Different existing and future, i.e. phase I and phase II, projects for electronics modules using System-on-Chip and ATCA:

• What is the project?
• What is the SoC being used for?
• What SoC is being used?
• What software is being used?
Readout Driver (ROD) for the Cathode Strip Chambers (CSC) of the ATLAS muon system:

- Readout for 32 CSCs
- One ATCA shelf with 6 Cluster On Board (COBs) and Rear Transition Modules (RTMs)
- Each COB is equipped with 5 Reconfigurable Cluster Elements (RCE): 4 Data Processing Modules (DPM) and 1 Data Transmission Module (DTM)
- Each DPM has 2 Xilinx Zynq Z045 and each DTM 1 Xilinx Zynq Z030, each COB has a 24-port 10 GbE Fulcrum Ethernet switch for network connection
- The CSC RODs were installed in ATLAS in 2014. They have been running very stably since.

COB
- DPM: FEX and sending to SLINK
- DTM: manage trigger and busy signals

RTM
- GLINKs from CSC chamber front-end cards and SLINKs
Single ATCA board: 1 COB with 2 RCE.
ATLAS TTC interface in the RTM.
SFP connections to VLDB (frontends) and S-Link
16 ATLAS-IBL-like tracker modules.
2 Time-of-flight systems.

In 2016 a HSIO-based system (High Speed Input Output) was installed, it is supposed to be replaced by the COB-based system during a technical stop soon or during LS2.

The same setup has been used for the Inner Tracker Pixel Test Readout.
SLAC COB Software Environment

- **AFP + CSC/DTM:** ArchLinux
 - Rolling updates challenging, no stable platform for common middleware
- **Originally ATLAS TDAQ ported for AFP, but later abandoned for RCF**
 - TDAQ packages originally ported to ArchLinux/Zynq: IS, IPC, OH, PMG
 - Port used crosstools-ng and CMT:
 - Should be much simpler with CMAKE
 - **Remote Call Framework (RCF):**
 - Class serializing (programmatically, no IDL compiler)
 - Network patterns (based on BOOST ASIO)
- **CSC/DPM runs RTEMS:**
 - CSC feature extraction, data formatting, S-Link transmission, and control program
- **CSC/DPM and CSC/DTM use SUN/RPC and JSON configuration data**
- Successfully booted Zynq with **Centos 7/ARM:**
 - Considering to migrate from ArchLinux soon
 - Fast bug fixes provided by community
 - Release based Linux distribution more suitable to run common middleware (TDAQ)
 - Does not reinvent the concept of a Linux distribution (in contrast to buildroot and YOCTO)
 - Still requires **board-specific kernel** builds
uTCA-based Calorimeter Trigger Processor

First CMS ZYNQ SoC card (Phase-1 upgrade)

- 22 cards (incl. spares) deployed in production in 2015 and running stably since as part of calorimeter L1 trigger chain
- Also in widespread use as a Phase-2 demonstrator platforms in several CMS upgrade projects and multiple institutions*

Key designs points:

- Virtex-7 690T FPGA with 80 MGTs for data processing
 - 69RX/48TX 10Gbps optical links, 12RX/TX backplane MGT links
- ZYNQ XC7045 SoC FPGA with dual ARM Cortex-A9 CPU used as the board control endpoint
- Embedded Xilinx PetaLinux running on the ZYNQ

Use of the ZYNQ SoC:

- Provides board configuration support (booting FPGA, configuring memories, clocks, optics, etc.)
- Acts as primary network-connected TCP endpoint on the board during online operation
- AXI Chip-to-Chip employed to seamlessly extend the memory space of the ZYNQ SoC to the Virtex-7 FPGA.
- Xilinx Virtual Cable (XVC) service running on the ZYNQ replaces a physical cable with a TCP/IP connection to Xilinx toolset
- Eye Scan Capability of IBERT ported to ZYNQ → Integrated Eye Scan (IES)
 - (see backup slide for more details)
- Application software based on Remote Procedure Call (RPC)

*CMS Phase 2 Demonstrators:
Track Trigger: CERN, Cornell, Rutgers
Correlator Trigger: CERN, FNAL, Wisconsin
EMU, HB/EB Cal Readout and Trigger: CERN, FNAL, Princeton, Texas A&M, UCLA, Virginia
“ELM”: Embedded Linux Mezzanine (Phase-2 upgrade)

Key design points:

• Control point for **ATCA in mezzanine** form factor (84mm x 75mm)
 – **stretched version of COMe mini, with a second MGT connector** added and PC/AT pins repurposed to ZYNQ PL IOs

• Adopted by multiple CMS Phase-2 upgrade back end subsystems

• Sub-project of APx consortium (see backup slide)

• ELM1: 7-Series ZYNQ, XC7Z045-2 (8 GTX MGTs)

• Embedded Xilinx PetaLinux running on the ZYNQ

• Programmable IO: >24@3.3V, 74@1.8V, 8x 10Gbps MGTs

• ELM2: ZYNQ Ultrascale+ (2019)

Use of the ZYNQ SoC:

• Extending the concept successfully pioneered with CTP7 design

• Low latency access point tightly integrated with workhorse FPGA(s)

• **MGT-based AXI Chip-to-chip bridge to processing FPGA(s)**

• **PL-based 10GbE TCP/IP Offload Engine**
 – fast data transfer to processing FPGA(s) for large memory config IO and test stand DAQ applications

• Interface to PCIe/SSD

• **Application software based on Remote Procedure Call (RPC), using Google Protocol Buffers**

Present CMS Phase 2 Intended Use:
Calorimeter, Correlator and Muon Triggers
ECAL Barrel, CSC and GEM readouts.
CMS – Barrel Calorimeter Processor

Barrel Calorimeter Processor: A common hardware platform targeted for the electromagnetic (EB) and hadron (HB) calorimeters in the barrel region of CMS

- **Functionality of the BCP**
 - Control of the on-detector electronics of EB or HB
 - Data concentration from 24 Front-End towers in EB or two wedge in HB per BCP
 - Digital Spike (noise) suppression and Trigger Primitive Generation
 - Provides single crystal trigger primitives to the trigger system

- **Use of the SoC:**
 - Configuration, control and monitoring of the board:
 - Hardware control of clock, optical modules + configuration of FPGAs
 - Run control of processing FPGAs: read/write status/control registers and memories/LUTs
 - BCP demonstrator board is in development and will use the Embedded Linux Mezzanine (ELM) board with Xilinx Zync SoC.
 - Future BCP prototype will be developed to host two FPGAs
 - Each FPGA will be controlled by the ELM using one bi-directional SERDES lane
 - Interface between user and ELM is via 1 GbE switch
 - A second lane will be used via the ELM as 10 GbE (not shown) and will be useful for stand-alone data collection for test beams and other development tasks

- **Operating System = embedded Linux:**
 Specific distribution to be decided

Interactive access:
- ssh, mpeek & mpoke, Xilinx Virtual Cable, FPGA configuration, IBERT test programs, etc.

Application software:
- Private implementation similar to Remote Procedure Call (RPC) flexible & extendible (C++)
ZYNQ-IPMC

Key designs points:

- **Open-source non-NDA HW/SW/FW** ATCA IPMI controller—IPMC (Phase-2 upgrade)
- Developed at U. of Wisconsin
- **Adopted by multiple CMS Phase-2 upgrade back end subsystems**
- Sub-project of APx consortium (see backup slide)
- Real-time monitoring, diagnostic and control of ATCA board services
- **244-pin MiniDIMM form factor, ~100 3.3V configurable IOs in ZYNQ PL**
- ZYNQ XC7Z020 SoC
- 16 ADC channels (16-bit) for fast response signal monitoring

Use of the ZYNQ SoC:

- Cortex-A9 @ 600+ MHz backed by 256MB of RAM is a radical upgrade in resources compared to typical IPMC hardware platforms
- **C++/FreeRTOS-based runtime framework**
- Employing a true object-oriented approach to the design without performance penalty
- **HW design to be fully published**, schematics, PCB, artwork, BOM, for independent production
- **SW design to be released under GPL**, no NDA required to use/reference
ATLAS Level0 Muon MDT Trigger Processor

64 Blades for 16 sectors, barrel/forward, +/-Z

- Main FPGA (e.g. KU15P)
 - all Fiber I/O at \(\leq 10 \)Gbps
- 3 Processing Mezzanines
- CERN IPMC – Xilinx XVC, back-up path for FPGA config and board communications
- Zynq (likely mezzanine)
 - Linux OS (Petalinux tools)
 - "IPBus-like" communications for register access, downloading
 - "BUTool" CLI scripting tool (based on CMS "AMC13Tool"
- Ethernet switch: 1Gbps to Zynq, 100 Mbps to IPMC
Pixel DTC

SoC and infrastructure very similar to ATLAS L0MDT

Not yet clear if this blade will belong to a family or consortium!
CMS HL-LHC Track Trigger

Cornell is designing the FPGA-based ATCA processing board for the Track Trigger system. The μTCA “YUGE” (Your Ultrascale Gigabit Evaluator) board allows early evaluation of planned technology, including 25 Gbit links, UltraScale+ FPGAs, and the Zynq SOC module.

- Zynq SOC – YUGE has 7020 chip on an Enclustra Mars ZX2 module, using a 200-pin SODIMM connector
 - first ATCA will use Zynq UltraScale+ MPSoC, also on a pluggable module
- Evaluating both Petalinux and FreeRTOS for either “smart” or “dumb” functionality
- The Zynq interfaces to all hardware: some control is autonomous, other via network commands
 - Xilinx AXI Chip2Chip to main FPGA for register and memory configuration and monitoring
 - Xilinx Virtual Cable (Virtual JTAG) to main FPGA for programming and debugging
 - I2C bus to control and configure the optical interfaces and clock distribution
 - Zynq PL to control power supply sequencing for the main FPGA

CMS HL - LHC Track Trigger

Charlie Strohman crs5@cornell.edu
CMS Serenity

(Not using Xilinx Zynq but similar approach)

Prototype for studying control and monitoring on ATCA blades, and for evaluating different FPGAs

To be used for Outer Tracker DTC, HGCAL DAQ & TPG, and Level-1 Trigger

• COM Express Card:
 - Pluggable embedded CPU
 - COM Express Type 10 Mini: 84mm x 55mm
 - Quad-core Atom, up to 2.2 GHz, 8 GB RAM, an SSD can be attached
 - PXE (net boot) and BMC (Board Management Control)

• PCIe interface is boundary:
 - Raw PCIe or IPBus over PCIe
 - FPGA vendor neutral
 - If COM Express Type 7 Mini was available it would provide even more connectivity, e.g. more PCIe, 4 x 10 GbE, etc.
 - Running uHAL (software library for IPBus) over PCIe

• Advantages of COM-Express:
 - A non-proprietary industry standard – many vendors, originates from the same standards’ body (PICMG) as ATCA
 - Supports non-proprietary operating systems
 - Provides a clean separation of hardware, firmware and software functionality
 - More powerful processor – could totally eliminate any need for separate rack-PCs, run DAQ directly on the ATCA blade in test stands
gFEX - Global Feature EXtractor

Part of the phase 1 Upgrade of the ATLAS Level-1 Calorimeter Trigger

- **Board architecture**
 - 3x UltraScale+ Virtex Processor FPGAs - U9P
 - Full calorimeter sent over 300 input fibers to a single gFEX board
 - Run processing algorithms to identify jets, calculate global event observables (Large-R jets, MET), provide trigger objects
 - 1x UltraScale+ Zynq MPSoC - ZU19
 - Configuration, Slow-control and Monitoring
 - ATCA platform with IPMC fully control and monitoring capability

- **Custom Operating System (OS)**
 - Using OpenEmbedded/Yocto toolchain to cross-compile Linux kernel; maintain official meta-l1calo layer registered with OpenEmbedded
 - Gone through multiple iterations of boards with both pre-UltraScale+ Zynq and current UltraScale+ Zynq MPSoC
 - Kernel patches and custom recipes written for python packages to be included in custom-developed OS on top of mainline Linux
 - Undergoing implementation of ATLAS DCS OPC-UA project, as well as a recipe for cross-compiling ROOT6

- **Functionality of ZU19**
 - Configuration of clocks, FPGAs, golden image, etc. through a well-defined user-facing register map
 - Slow-control to enable read-out fibers through read-out path, put board in Run-Mode state for detector operation, activate/deactivate input/output fibers on a link-by-link basis, read/write QSPI flash, and other registers in defined user-facing register map
 - Slow-control/monitoring via IPBus protocol and any other communication protocol allowed through software developed in-house, “ironman”, a single-threaded, reactor-based event-driven callback Python framework; also supports websockets and HTTP streaming
 - Monitoring of the onboard hardware components through I2C
gFEX - Future applications of SoCs for ATLAS/HEP

● **On-board trigger-level analysis**
 ○ PL firmware and on-board Linux OS can increase the DAQ flexibility and capacity in data collection and processing
 ○ High-speed LPDDR4 memory (2.4 Gbps) can provide significant capacity for buffering
 ○ **Could do “real” analysis** (e.g. invariant mass calculations) **as well as calibration-style computations** (e.g. di-jet balance). Depending on the proposed application, these could provide additional information to L1Topo, for example

● **Multi-processor system opportunities**
 ○ Low-power ARM Mali-400 **GPU** may aid in vector calculations (e.g. matrix multiplication for calorimeter image processing)
 ○ **Real-time processor** for trigger-level analysis (see above), real-time calibration, and object-level monitoring
Muon-to-Central-Trigger-Processor Interface

- **Functionality of the MUCTPI:**
 - Data concentration of 208 muon trigger sector inputs
 - Overlap removal, i.e. avoid double counting of single muons
 - Provide muon trigger objects to topological trigger and muon trigger object multiplicity to Central Trigger Processor

- **Use of the SoC:**
 Configuration, control and monitoring of the board:
 - Hardware control of clock, power, optical modules + configuration of FPGAs
 - Run control of processing FPGAs: read/write status/control registers and memories/LUTs
 - Current prototype with Zynq SoC, build a new prototype with Zynq Ultrascale+ MPSoC

- **Operating System = embedded Linux:**
 Built using Yocto project and Xilinx meta layer (+ sources)

- **Interactive access:**
 ssh, peek&poke, Xilinx Virtual Cable, FPGA configuration, IBERT test programs, etc.

- **Application software:**
 Two alternative approaches:
 1. RPC-like private implementation: flexible/extendible (C++)
 2. Port of ATLAS TDAQ to Zynq: run control application + ROOT on Zynq
 → Investigating the use of CentOS ...
ATLAS – TREX (Tile Rear-Extension Module)

• Functionality of the TREX:
 - Rear-transition module in the L1Calo PreProcessor VME crate
 - Sends the real-time data from the front PreProcessor Module (PPM) to the FEXs (optical), and to the legacy L1Calo processors (electrical)
 - Formats & sends the PPM event data to FELIX & to legacy ROD (optical)

• Use of the SoC:
 Configuration, control and monitoring of the board via VME and the PPM:
 - Config. & control of clock and power modules + configuration of FPGAs
 - Monitor the operating conditions of TREX (temps, voltages, currents)
 - Slow-control communication with the DCS (via Ethernet)
 - No SoC on current prototype, but use commercial module with Zynq Ultrascale+ MPSoC on pre-production modules

• Trenz Electronics Module ZU2CG-1E:
 – Dual-core ARM® Cortex-A53 MPCore up to 1.3GHz
 – 1 GByte of 32-Bit DDR4 SDRAM
 – 128 MByte SPI boot flash + 4 GByte eMMC
 – 260 pin board-to-board connector with 14 MIO, 132 I/O, and 4-lane GTR
 – 1 GbEth PHY, 1 USB 2.0 OTG PHY, etc.

• Operating System = embedded Linux:
 Not yet decided, but Yocto-based project preferred

• Application software:
 OPC UA server for the communication with the DCS
 Service apps (C/C++/Python) to configure, control & monitor the board
Detector Control System – monitor and control ATCA back-end electronics:
- Control of shelves via shelf manager SNMP interface (Pigeon Point)
- SoCs for independent and flexible blade interface:
 Monitor board health, power control and reset signals
 No IPMB or shelf manager bottlenecks, no dependency on proprietary software

Software – OPC UA* based interface:
- OPC UA server on blade SoC
 Industry standard with many commercial and open source implementations on various platforms
 Run on embedded Linux
 Network integration using Ethernet/TCP
- Build servers with **quasar** framework
 Makes OPC UA transparent to developer
 Reduces sw development (C++, python) significantly by generating code from xml device model and providing useful components
 Build environment for several platforms (x64 Win+Linux, ARM)
 Client software components to ease SCADA or run control integration

*Open Platform Communications Unified Architecture
**Quick OPC UA Server generAtion fRamework*
There is a lot of commonality for the hardware:

Almost all projects use or are intending to use
- Xilinx Zynq SoC, based on ARMv7 (32-bit) processor architecture
- Xilinx Zynq UltraScale+ MPSoC, based ARMv8 (64-bit) processor architecture

Advantages of Xilinx Zynq (MP)SoC are:
- Provide an efficient, low-latency way to interface hardware and software:
 - Peripherals, like I2C, SPI, etc.
 - Other FPGAs via Xilinx AXI Chip2Chip Links
- Allows one to run a set of low-level test tools, e.g. Xilinx Virtual Cable (XVC), IBERT test programs, FPGA configuration, etc.
Summary – Software

Commonality for the software?

- **Operating system:**
 - Provided by Xilinx: embedded Linux built using Yocto/meta-xilinx or Petalinux which uses Yocto
 - Linux distribution: ArchLinux, CentOS
 - Real-time operating system: freeRTOS, RTEMS

→ *All are open-source!*

→ *It might help if we can agree on common platform, e.g. CentOS, at least for those that do not need real-time features*

→ *CentOS is gaining speed in the ARM user community, it is being used at CERN’s techlab*

→ *For the Zynq, one could deploy CentOS (or a stripped down version):*
 - *The kernel is hardware-specific* (for the Xilinx Zynq), because of the drivers and the device tree required by Xilinx and/or custom IP cores in the PL and/or required by different Vivado versions
 - *The decoupling is achieved at the level of the system libraries*, i.e. glibc etc.
 - *The application software is built on top of CentOS* (and system libraries)

⇒ *ATLAS AFP ROD (SLAC) have started investigating this approach, ATLAS MUCTPI (CERN) are also interested*
Summary – Software

Commonality for the software?

• User application software – a variety of approaches:

 – **IPbus:**
 • Fully decouple implementation (on Zynq) and application (on PC)
 • Runs over a variety of physical media, UDP+ControlHub, TCP, PCIe, SPI
 • Provides a software library and a user-facing hierarchical register map

 – **RPC-like approach:**
 • Fully decouple implementation (on Zynq) and application (on PC)
 • A variety of middleware is being used: Google protocol buffers, Remote Call Framework with JSON, simple home-built C++ RPC-like software,

 – **Port of TDAQ software:**
 • Run control application runs on Zynq
 • Could become much simpler if used with CentOS, and even more so if LCG and TDAQ are built for ARM

 – **Run OPC UA server on the SoC**
 • For hardware control, complementary to IPMI → shelf manager → SCADA

⇒*Share our experiences ... and learn from each other*
Summary – Software

• **Generally, having an operating system provides a lot of flexibility:**
 – Makes the SoC look like the SBC or like the PC+VME-bridge in the legacy VME system
 – Possibility to run monitoring and/or calibration applications
 – Possibility to run stand-alone in testbeds
 – Potential to improve long-term maintenance of control and configuration

• **For development and debugging it has already proven to be a big advantage to be able to “log into” the electronics module:**
 – Interactive running of test programs, e.g. Xilinx IBERT eye scans, or I2Cdump, etc.
Summary – Other Issues

Long-term support?
– Large community of embedded systems and commercial interest!
– Linux, gcc, ... are all open-source software!
– We are becoming a non-negligible community of SoC users ourselves ...

System administration aspects?
– Network administration, e.g. assignment of MAC and IP addresses, DHCP, private network, HPM.3 (DUID)?
– Network boot services, e.g. could the SoCs be booted from system administration PCs? How would the boot images be provided, in particular, if using CentOS?
– Kernel patches due to security updates?
⇒ We might need to define new protocols/procedures together with system administrators!
Outlook

I suggest to create an interest group:

“System-on-Chip for Electronics”

⇒ Mailing list: system-on-chip@cern.ch

⇒ Exchange information, suggestions, questions, ...
⇒ Could organise regular meetings (1-2 times per year?) ...
---- BACKUP ----
CMS – CTP7

ZYNQ-based Integrated Eye Scan (IES)

- Eye Scan Capability of IBERT ported to ZYNQ
- Non-invasive scans taken on live operational data (not PRBS test patterns)
- Parallel multi-channel capability for faster results

Programmable engine can be used for a wide range of applications
- Quantitative link characterization and parameter optimization
- Operational troubleshooting
- Trend analysis and forecasting for preventive maintenance

ECAL link @ 4.8 Gbps

HCAL link @ 6.4 Gbps

Eyescans taken at CMS during physics fill with stable beams in the LHC
US CMS ATCA APx Consortium

- Pooling of efforts in ATCA Processor hardware, firmware and software development
- Multiple ATCA processors and mezzanine board types
- Modular design philosophy, emphasis on platform solutions with flexibility and expandability
- Reusable circuit, firmware and software elements
gFEX – ZYNQ MPSoC EG Devices
Block Diagram

Zynq® UltraScale+™ MPSoCs: EG Block Diagram

Processing System
Application Processing Unit
- ARM Cortex™-A53
- NEON™
- Floating Point Unit
- 32KB iCache w/ECC
- 32KB D-Cache w/ECC
- Memory Management Unit
- Embedded Trace Macrocell

Memory
- DDR4/3L LPDDR4/4
- 32/64-Bit w/ECC
- 256KB OCM with ECC
- 64KB L2 Cache

Graphics Processing Unit
- ARM Mali™-400 MP2
- Geometry Processor
- Pixel Processor

High-Speed Connectivity
- DisplayPort v1.2a
- USB 3.0
- SATA 3.1
- PCIe® 3.0 / 2.0
- PS-BTR

General Connectivity
- GigE
- USB 2.0
- CAN
- UART
- SPI
- Quad SPI NOR
- NAND
- SD/eMMC

Real-Time Processing Unit
- ARM Cortex™-R5
- Vector Floating Point Unit
- Memory Protection Unit

Platform Management Unit
- System Management
- Power Management
- Functional Safety

Configuration and Security Unit
- Config AES Encryption, Authentication, Secure Boot
- Voltage/Temp Monitor
- TrustZone

System Functions
- Timers, WDT, Resets, Clocking & Debug

Programmable Logic
- Storage & Signal Processing
 - Block RAM
 - UltraRAM
 - DSP
- System Monitor
 - General-Purpose I/O
 - High-Performance HP I/O
 - High-Density HD I/O
- High-Speed Connectivity
 - Interlaken
 - GTH
 - GTY
 - 100G EMAC
 - PCIe Gen4
Monitoring by 3 sources:
- Onboard power-management chips
- IPMC – onboard & Shelf-manager
- Zynq - MPSoC

Strategy:
- **Power management chips:** Emergency actions
 - Cases: Over-voltage/Current
 - DCS only for intended actions and general monitoring
- **Zynq:**
 - DCS monitoring - using OPC UA through TCP/IP
 - Hardware components monitored: (sensors, FPGAs, etc...)
 - Measured parameters: Voltages, Currents, Temperatures
 - Other: pFPGAs information, health signal, CRC counter
 - **DCS actions:** Board reset or shutdown, miniPODs reset
- **Shelf-manager:**
 - DCS monitoring - through SNMP using fwATCA
 - Fans: status & speed
 - IPMC – status ON/OFF
 - gFEX board status - connection to the chassis and active
 - **DCS actions:** Board shutdown