

Run: 303079 Event: 197351611 2016-07-01 05:01:26 CEST

> Kunihiro Nagano (KEK, Japan) on behalf of the ATLAS Collaboration

LHCP 2018 Conference, 4 June 2018, Bologna, Italy

ATLAS @ 13 TeV – in a nutshell

- Excellent data taking efficiency and excellent data quality. Up to 2017:
 - -- Delivered: ~93 fb⁻¹
 - -- Recorded: ~86 fb⁻¹
 - * Reflects DAQ inefficiency as well as HV ramp-up time after stable beam
 - Good for physics: ~80 fb⁻¹
 * All reconstructed physics objects to be of good data quality

- ATLAS strategy on 13 TeV p-p data analysis
 - -- Completing ~36 fb⁻¹ analyses (2015-2016 data)
 - -- Update with ~80 fb⁻¹ (2015-2017 data) for some high priority analyses, to be followed up (e.g. excesses in ~36 fb⁻¹ data), with new method, etc
 - -- Final and legacy papers with full Run-2 data set

ATLAS expresses deep thanks to the CERN accelerator teams for their tremendous efforts and successes in providing these high statistics data sets!

Challenges

- A big experimental challenge in particular in 2017 data is pileup
 - -- Multiple p-p interactions occur in a same bunch crossing, which cause for instance:
 - * Multiple vertices, many low p_T tracks
 - * Underlying energy deposits in calorimeter
 - -- Detector and data taking challenges
 - * Trigger rates, processing computing power, detector read-out with large occupancy

→ Continuous efforts in detector subsystems to improve data taking stability led to a success of smooth operation up to $<\mu>\sim60$

Z→µµ with 28 vertices (2018 data!)

For 2017 runs, Luminosity leveling requested at $\langle \mu \rangle \sim 58$ (corresponding to L=1.5x10 ³⁴cm⁻²s⁻¹ with "8b4e" filling scheme) in order to avoid unnecessary impact to data taking and quality

Challenges

- An example: two $Z \rightarrow \mu\mu$ event at different vertices
 - -- Two hard p-p interactions in a same bunch crossing

Two Z→µµ cand at different vertices

Trigger and Trigger-Level Analysis

• Trigger

- -- Hardware topological trigger processor at Level-1 actively used for physics
- -- Continuous improvements following state-of-theart offline algorithms
- -- Menu consists of ~2000 triggers, comprehensively covering the wide physics program
 - * Low threshold inclusive triggers maintained:
 - -- Single e/μ with $p_T>26$ GeV
 - -- $E_T^{miss} > 110 \text{ GeV}$
- Physics analysis at trigger level
 - -- Search for di-jet resonances at sub-TeV using trigger-level object
 - * Overcoming bandwidth limitation by recording only trigger jet information

Making full use of Trigger and DAQ resources and bandwidths to maintain and improve ATLAS physics sensitivity

Parallel Talks on Fri:

- S. Souza, K. Pachal,

- N. Styles, C. Gallioni

Reconstruction performance

- Converging toward ultimate and final precision Run-2 reconstruction
 - -- Improved in-situ calibration (more data and better methods)
 - -- Improved tuning/optimizations to mitigate pileup impact on performance
 - -- New working points/optimizations for corner phase spaces, e.g. very low and high $\ensuremath{p_T}$

Physics Highlights

In this talk: highlights only with focus on -- <u>Final results ~36 fb⁻¹ shown new today</u>

-- Brand-new results ~36 fb⁻¹

-- Brand-new results ~80 fb⁻¹

Most of the results shown today are new for LHCP!

NEW **Higgs boson mass**

4lepton mass

ATLAS

Data

135

2σ

50

arXiv:1806.00242 https://arxiv.org/abs/1806.00242

Reminder on recent Higgs results

H→WW

H→WW, bb, cc, μμ, ... results with 36.1 fb⁻¹
 -- H→ WW result first shown at 2018 winter conferences

- Reminder: Run-1 ATLAS data alone: 4.5 σ significance (3.4 σ expected)
- <u>New today at LHCP: cross section measurement with Run-2 36.1 fb⁻¹</u>
 - -- VBF and boosted (mostly ggF) categories with 3 decay channels

Combined Run-1 and Run-2 significance: 6.4 σ (5.4 σ expected)

10

Higgs production associated with a top quark pair

Talk today: C. Grefe Parallel talk today: - J. Jovicevic

Higgs production associated with

<u>a top quark pair</u>

- Reminder -- evidence with 36.1 fb⁻¹ in ttH(ττ, γγ, bb, VV) released for publication on Dec 24 last year: 4.2 σ observed (3.8 σ expected) Phys. Rev. D 97, 072003 (2018) https://doi.org/10.1103/PhysRevD.97.072003
- New today at LHCP: update with 79.8 fb⁻¹ for ttH($\gamma\gamma$, ZZ \rightarrow 41)

HOT!

• $ttH(\gamma\gamma)$ with 79.8 fb⁻¹

- -- Increased sensitivity by analysis improvements e.g:
 - Multi-variate analysis utilizing γ and jet kinematic properties
- $\underline{\text{ttH}(ZZ \rightarrow 41)}$ with 79.8 fb⁻¹
 - -- Improved sensitivity by analysis improvements e.g.
 - * Separate leptonic and hadronic categories with BDT (for hadronic)
 - -- No event was observed
 - * Zero events found for 0.45 total expected (0.38 ttH) in the purest Lep and Had categories

Talk today: C. Grefe Parallel talk today: - J. Jovicevic

• 79.8 fb⁻¹ ttH($\gamma\gamma$,ZZ \rightarrow 41) result was combined with 36.1 fb⁻¹ ttH(bb,multi-lepton), as well as with the Run-1 result

-- Run-1 and Run-2 combined: 6.3 σ significance (5.1 σ expected)

13

• The cross section was measured both for 8 TeV and 13 TeV

The measured cross section at 13 TeV is:

$$\sigma_{ttH} = 670 \pm 90(stat)^{+110}_{-100}(sys)$$
 fb

in agreement with SM prediction of 507_{-50}^{+35} fb

The measured cross section at 8 TeV is:

 $\sigma_{ttH} = 220 \pm 100(stat) \pm 70(sys)$ fb

in agreement with SM prediction of 133_{-13}^{+8} fb

arXiv:1806.00425 https://arxiv.org/abs/1806.00425

Talk on Thu: G.Facini Parallel Talk today: - Y. Okumura

Resonance search with high p_T lepton

with 79.8 fb⁻¹

ATLAS-CONF-2018-017

Talk on Thu: G.Facini Parallel Talk today: - Y. Okumura

Type-III seasaw heavy lepton search

with 79.8 fb⁻¹

- Reminder -- in Run-1 probed 21+2j(W)+E_T^{miss} and 31 final states
 - -- 95% CL exclusion < 330 GeV
- $\begin{array}{c} q \\ q \\ W^{\pm} \\ \overline{q} \\ \overline{q} \end{array} \\ \begin{array}{c} W^{\pm} \\ L^{\pm} \\ W^{\pm} \\ U^{\pm} \\ W^{\pm} \\ q \\ \overline{q} \end{array} \\ \begin{array}{c} I^{\pm} \\ W^{\pm} \\ Q \\ \overline{q} \\ U^{\pm} \\ U^{\pm} \\ Q \\ \overline{q} \end{array} \\ \begin{array}{c} U^{\pm} \\ W^{\pm} \\ U^{\pm} \\ U^{$

- New today at LHCP: search in Run-2 data with 79.8 fb⁻¹
 - -- Pair production of heavy leptons (N^0, L^{\pm})
 - -- 2l+2j(W)+E_T^{miss,} classified into 6 categories (lepton flavour, charge)
 - -- Signal region selection optimized for each category

Nr of events in each category 10⁵ ATLAS Preliminary Data Top quarks s=13 TeV, 79.8 fb⁻¹ 444 Total SM Diboson 10⁴ Drell-Yan 10^{3} Fakes 10^{2} 10 CRs 6+ 6+ m_{ii} CR Top CR Z+jets VR m_{ii} VR Signal region

95% CL exclusion up to 560 GeV for mass of heavy lepton -- Under assumption of equal BRs to all leptons, and that neutral and charged heavy leptons are mass-degenerate

Events

ATLAS-CONF-2018-020

HOT!

Parallel Talk on Wed: A. Haas

Exotic Higgs decay search: $H \rightarrow \gamma(\gamma) + E_T^{\text{miss}}$ with 79.8 fb⁻¹

- A hypothesis to explain such final state SUSY
- Reminder -- in Run-1 probed VBF production (γ + E_T^{miss} +2j).
 - Although a slight excess observed,
 95% CL exclusion for Higgs BF was set
- <u>New today at LHCP: search in Run-2</u> <u>data with 79.8 fb⁻¹</u>
 - -- Consider associated production with Z, to reduce backgrounds
 - -- Backgrounds dominated by photon fakes (e, jets) which are well controlled and validated at CRs

95% CL limit on Higgs BF to $\gamma(\gamma) + E_T^{miss}$ 5-18% depending on NLSP and LSP masses -- 11 (18)% for massless (massive) gravitino

ATLAS-CONF-2018-019

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-019/

SM Physics

- High precision validation of SM -- Inclusive jet production cross section is now compared with NNLO * NNLO describes data if p_f^{jet} as QCD scale arXiv:1711.02692 accepted by JHEP
- Jet-substructure validation: "soft-drop mass"
 - -- First jet substructure quantity at hadron colliders to be calculated beyond leading log (LL)
 - -- Measured with 32.9 fb⁻¹ at 13 TeV

Calculations agree with data except for regions where non-pert. effect is large (where MC generators are better)

> arXiv:1711.08341 submitted to PRL https://arxiv.org/abs/1711.08341

Talk on Fri: M. Vos Parallel Talk on Thu: - A. Knue, R. Sipio

Top Physics

LHC is a top factory → precision cross section, mass measurements -- Rich variety of processes to study

* tZ – evidence (4.2 σ observed, 5.4 expected) with 36.1 fb⁻¹

Phys. Lett. B 780 (2018) 557 https://doi.org/10.1016/j.physletb.2018.03.023

Boosted top production

• Differential di-lepton and pole-mass

Talk on Thu: Y. Nakahama, B. Petersen Parallel Talks: S. Chien, S. Griso, - J. Long, Miguens

SUSY searches

NEW

- Getting important to improve and/or invent analysis techniques to survey:
 - -- Uncovered phase space, e.g. small mass difference
 - -- Small production cross section, e.g. EW, 3rd generation
 - -- Unconventional topology, e.g. long-lived, R-parity violating (RPV)

Heavy Ion Physics

For Pb+Pb collisions, the $xJ\gamma$ distribution is modified with increasing centrality, consistent with the picture of parton-energy loss in the hot nuclear medium.

Heavy Ion Physics

Charged particle suppression in Pb-Pb and Xe-Xe
 -- Nuclear modification factor, R_{AA}, vs p_T, for different centrality

ATLAS-CONF-2018-007 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-007/

ATLAS in 2018 – in a nutshell

- LHC has already broken records
 -- L(max)=2.1 x 10³⁴ cm⁻²s⁻¹
 -- intL/week(max)= 4.1 fb⁻¹
- ATLAS was able to cope with this record-high luminosity of 2.1x10³⁴ cm⁻²s⁻¹ without need of luminosity leveling

 Pileup is less thanks to the "BCMS" bunch scheme
- ATLAS is smoothly collecting data!
 -- Data taking efficiency > 93%,
 > 15 fb⁻¹ already recorded
 - -- Trigger menu same as 2017
 - -- No "luminosity leveling" necessary with the 2018 beam condition so far

Mean Number of Interactions per Crossing

2018 luminosity

~100 fb⁻¹ 13 TeV p-p data recorded!

Already, 2018 performance plots!

Z→µµ mass

Already, 2018 performance plots!

Excellent performance also in 2018! -- Efficiency of good for physics / recorded: 96% (with first 7 fb⁻¹)

Summary

Tremendous amounts of hot-off-the-press and important physics results will be presented first time at this conference from the ATLAS experiment, for instance:

- -- Cross section measurements of $H \rightarrow \tau \tau$
- -- Observation of ttH production
- -- New limits from searches with ~80 fb⁻¹ data

Stay tuned, and enjoy our reports!

◆ ATLAS has been and is being collecting data with high efficiency and high quality

- -- 100 fb⁻¹ 13 TeV p-p data already collected in Run-2
- -- Heavy-ion runs as well as special runs

Thanks to the CERN accelerator teams!

Backup Slides

Reconstruction performance

- Converging toward ultimate and final precision Run-2 reconstruction
 - -- Improved in-situ calibration (more data and better methods)
 - -- Improved tuning/optimizations to reduce pileup dependence
 - -- New working points/optimizations for corner phase spaces, e.g. very low and high $\ensuremath{p_{T}}$

Reconstruction performance

- Pileup mitigation techniques e.g. subtraction, correction continuously improving and getting mature
 - -- E_T^{miss} reconstruction improved with track soft term (TST)

Reconstruction performance

- b-jet and tau reconstructions are often key of particular analyses
 - -- Improved calibrations often directly improves sensitivity of such analyses
 - -- Pursuing sophisticated algorithms and technologies (e.g. deep learning)
 - -- Optimization of corner phase spaces e.g. very high p_T

https://arxiv.org/abs/1805.01845