Theory perspective on understanding ttH/tH (signal and) background

Stefano Pozzorini

based on

T. Jezo, J. Lindert and S.P. [arXiv:1802.00426]

and HXSWG studies in collabration with

F. Siegert, M. V. Garzelli, T. Jezo, J. Krause, A. Kardos, J. Lindert, R. Podskubka, C. Reuschle, M. Zaro

LHCP 2018, Bologna, 4 June 2018

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

7iiri⁄

Foreword I

$\sigma_{t\bar{t}H}$ at NLO QCD

[Beenakker, Dittmaier, Krämer, Plumper, Spira, Zerwas 2001; Reina, Dawson 2001]

- \Rightarrow 10% level precision
- \Rightarrow landmark for interpretation of $t\bar{t}H$ discovery

Foreword II

Dominant TH systematics in $t\bar{t}H/tH$ from $t\bar{t}+b$ -jet background to $t\bar{t}H(b\bar{b})$

- $t\bar{t} + b$ -jet data help, but "extrapolation" to signal region calls for precise theory prediction for $t\bar{t} + b$ -jet shapes
- significant sensitivity improvements may be achieved by
 - exploiting increasing variety and precision of $t\bar{t}b\bar{b}$ MC tools
 - improved understanding of $t\bar{t}b\bar{b}$ multi-scale dynamics
 - much closer collaboration between theory and experiments

1) Different $t\bar{t} + b$ -jet simulation approaches

2 New Powheg 4F $t\bar{t}b\bar{b}$ generator

Option 1: inclusive NLOPS $t\bar{t}$ 5F (e.g. Powheg)

 $t\bar{t}b\bar{b}$ described through $t\bar{t}j$ tree MEs plus $g \rightarrow b\bar{b}$ shower splittings

 $\bar{b}g \rightarrow t\bar{t}\bar{b} + \text{IS splittings}$

Precision vs accuracy

- o precision lower than LO but parton shower allows for accurate tuning to data
- residual uncertainties difficult to quantify

Calls for improved description based on $t\bar{t}b\bar{b}$ MEs

- \Rightarrow testable prediction with higher precision and more realistic uncertainties
- \Rightarrow possible tensions with data more instructive than tuning a non predictive MC!

Option 2: (N)LO merging $t\bar{t} + 0, 1, 2$ jets 5F

 $t\bar{t}b\bar{b}$ described through $t\bar{t} + 0, 1, 2$ jet MEs and $g \rightarrow b\bar{b}$ shower splittings

- k_T -resolution cut separates MEs (with $m_b = 0$) from shower (collinear approx.)
- $g \rightarrow b\bar{b}$ splittings dominated by parton shower up to $m_{b\bar{b}}\gtrsim 100\,{\rm GeV}$ due to competition with harder light jets

Invariant mass of the 1st and 2nd b-jets system (ttbb cuts) MEPS@LO tt+0,1,2] 10⁻² 10⁻² 10⁻⁴ 10⁻⁴ 10⁻⁵ 501EEEA 14 12 10⁻⁵ 501EEEA 14 12 10⁻⁵ 501EEEA 14 10⁻⁵ 501EEEA 14 10⁻⁵ 501EEEA 10⁻⁶ 10⁻⁷ 10⁻⁷

 m_{bb} with ttbb cuts

Option 3: NLOPS $t\bar{t}b\bar{b}$ in 4F scheme

4F $pp \rightarrow t\bar{t}b\bar{b}$ **MEs with** $m_b > 0$ **at NLOPS**

- MEs cover full b-quark phase space including IS and FS $g \rightarrow b\bar{b}$ collinear splittings
- \Rightarrow NLOPS accuracy for $t\bar{t} + 2b$ -jet and $t\bar{t} + 1b$ -jet observables! [Cascioli et al '13]

Arguments in support of 4F scheme (see backup slides)

- dominance of final-state $g \rightarrow b\bar{b}$ splittings (in ttbb and ttb phase space)
- negligible $g \rightarrow b\bar{b}$ framentation logs beyond NLO at $p_T \lesssim 50\text{--}100\,\text{GeV}$

[Mangano, Nason 1992]

Nontrivial features of $pp \rightarrow t\bar{t}b\bar{b}$ at NLO

- $\bullet~$ 34 LO diagrams and $>1000~\rm NLO$ diagrams
- 6 external coloured partons
- 70–80% LO uncertainty from $\sigma_{t\bar{t}b\bar{b}} \propto \alpha_S^4(\mu_R)$ reduced to 20–30% at NLO [Bredenstein et al. '09–'10; Bevilacqua et al. '10]
- multiple scales from 5 to 500 GeV (gap between $b\bar{b}$ and $t\bar{t}$ systems)

Nontrivial NLOPS issues

- in Higgs region up to 30% matching/shower effects from double $g \rightarrow b\bar{b}$ splittings [Cascioli et al '13]
- $\Rightarrow\,$ crucial to understand $g \rightarrow b \bar{b}$ splittings and matching+shower uncertainties

YR4 comparisons of NLOPS $t\bar{t}b\bar{b}$ generators [1610.07922]

MG5aMC@NLO+PY8 (4F) vs Sherpa (4F)

- 40% NLOPS/NLO enhancement of $t\bar{t} + 2b$ XS in MG5
- related to sizeable enhancement of NLO radiation at $p_T \sim 100 \, {\rm GeV}$
- sensitive to resummation scale (scalup) in MG5

Question: large uncertainty or not?!

PowHel+PY8 (5F) vs Sherpa (4F)

- much better agreement
- but 5F scheme in Powhel not appropriate for collinear $g \rightarrow b\bar{b}$ splittings (ad-hoc cuts)

Question: small theory uncertainty or accidental?

(2) New Powheg 4F $t\bar{t}b\bar{b}$ generator

3 Ongoing NLOPS $t\bar{t}b\bar{b}$ studies within HXSWG

PowhegBox+OpenLoops [Jezo, Lindert, Moretti, S.P 1802.00426]

4F $t\bar{t}b\bar{b}$ NLOPS generator

- covers full b-quark phase space (see also [Bevilacqua, Garzelli, Kardos, 1709.06915])
- spin-corr. top decays and separation of soft/hard NLOPS radiation for ISR and FSR

Very large fixed-order NLO K-factor

- using $\alpha_S^{\rm LO}$ for $\sigma_{\rm LO}$ (typical in $t\bar{t}b\bar{b}$ literature) $\Rightarrow \sigma_{\rm NLO}/\sigma_{\rm LO} \sim 1.2$
- using $\alpha_S^{\rm NLO}$ throughout $\Rightarrow \sigma_{\rm NLO}/\sigma_{\rm LO} \sim 1.9$ applied to NLOPS soft radiation
- $\Rightarrow~$ requires: <code>careful soft/hard separation of NLOPS radiation</code>
 - understanding of origin of large correction $\ \leftrightarrow \$ scale choice

Restriction of soft NLOPS radiation in Powheg ("bornzerodamp")

$$k_T \lesssim h_{\text{damp}} = H_T/2$$
 and $\frac{R_{\text{soft}}(\Phi_R)}{B(\Phi_B) \otimes K_{\text{soft/coll}}(\Phi_{\text{rad}})} < \frac{h_{\text{bzd}}}{h_{\text{bzd}}} = 2$

- ⇒ avoids large K-factor (resummation) in wide regions where $p_{T,b} < k_T < h_{damp}$ and soft/coll factorisation not fulfilled
- \Rightarrow high stability wrt h_{damp} variations for multiscale process

600

NLOPS vs NLO Powheg $t\bar{t}b\bar{b}$ predictions [1802.00426]

Moderate NLOPS/NLO corrections

- consistent with NLO scale-variation bands
- 10% for σ_{tt+2b} and 20–30% at $m_{bb} \sim 100 \, {\rm GeV}$ (confirms double splittings)

Shape of light-jet p_T

- NLOPS quite similar to fixed-order NLO
- LOPS/NLOPS indicates that PY8 can strongly overestimate radiation at $p_T \sim 200 \text{ GeV}$ (see YR4) but Powheg+PY8 spectrum is NLO-like

Matching+shower uncertainties of Powheg $t\bar{t}b\bar{b}$ [1802.00426] |

Dependence on matching scales ($h_{damp} = H_T/4, H_T/2, H_T, 1.5m_t$ and $h_{bzd} = 2, 5, 10$)

Powheg+PY8 vs Herwig7

- MC uncertainties << QCD scale dependence: percent level for inclusive $t\bar{t} + b$ -jet observables and 10–20% level in jet- p_T spectrum
- High stability thanks to $h_{\rm bzd}$ restriction and independence of $1^{\rm st}$ Powheg emission wrt parton shower

Matching+shower uncertainties of Powheg $t\bar{t}b\bar{b}$ [1802.00426] II

Variations of $g \rightarrow b\bar{b}$ splittings + choice of α_S + scalup in PY8

$t\bar{t}b\bar{b}$ **Powheg+PY8 vs Sherpa** (only Powheg matching+shower uncertainties)

• double-splitting effects stable wrt variations of $g \rightarrow b\bar{b}$ in PY8

Iess than 10% NLOPS difference using different showers and matching methods*

*slightly more significant differences using Sherpa 2.2 recoil scheme

2 New Powheg 4F $t\bar{t}b\bar{b}$ generator

3 Ongoing NLOPS $t\bar{t}b\bar{b}$ studies within HXSWG

Ongoing NLOPS $t\bar{t}b\bar{b}$ studies within HXSWG

5 MC tools, 2 NLOPS methods, 3 showers, 10 contributing authors

Tool	MC@NLO	Powheg	Pythia	Herwig	Sherpa	MC contacts
Sherpa2.2+OpenLoops	X				х	F. Siegert, J. Krause
MG5_AMC@NLO	×		х	х		M. Zaro
MatchBox+OpenLoops	×			х		C. Reuschle, R. Posdkubka
Powheg+Helac		х	x	х		M.V. Garzelli, A. Kardos
PowhegBox+OpenLoops		х	x	х		T. Jezo, J. Lindert
	3	2	3	4	1	

Plan and philosophy for theoretically consistent tool comparison

- coherent definition of *intrinsic* MC uncertainties across different tools: separarate, synchronise and vary one-by-one perturbative/matching/shower dependencies
- model leading MC uncertainties based on understanding of underlying physics
- exploit MC comparison (and data) for checks and refinements
- \Rightarrow Theory framework for $tar{t}+b$ -jets systematics for $tar{t}H$ and $tar{t}bar{b}$ analyses at LHC

How to compare MC@NLO vs Powheg matching?

Splitting of NLO radiation into soft/hard parts

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_B} = \underbrace{\left[B(\Phi_B) + V(\Phi_B) + \int \mathrm{d}\Phi_1 R_{\mathrm{soft}}(\Phi_B, \Phi_1)\right]}_{=: \bar{B}_{\mathrm{soft}}(\Phi_B) \supset \mathrm{integrated \ soft \ radiation}} \underbrace{\left[\Delta(t_{\mathrm{IR}}) + \Delta(k_T) \frac{R_{\mathrm{soft}}(\Phi_R)}{B(\Phi_B)} \mathrm{d}\Phi_1\right]}_{\mathrm{resummation \ of \ soft \ radiation}} + \underbrace{\left[R(\Phi_R) - R_{\mathrm{soft}}(\Phi_R)\right] \mathrm{d}\Phi_1}_{\mathrm{rempart \ hard \ radiation}}$$

Powheg vs MC@NLO difference only in $R_{\rm soft}$

Powheg: $R_{\text{soft}}(\Phi_R) = R(\Phi_R) g_{\text{soft}}(\Phi_1, h_{\text{damp}})$ matrix element MC@NLO: $R_{\text{soft}}(\Phi_R) = B(\Phi_B) \otimes K_{\text{shower}}(\Phi_1) g_{\text{soft}}(\Phi_1, \mu_Q)$ parton shower

Soft profile $g_{\text{soft}}(\Phi_1, \mu)$ restricts R_{soft} to $k_T \lesssim \mu$ region

 \Rightarrow choose $h_{\rm damp} = \mu_Q$ and $g_{\rm soft}$ as similar as possible for consistent comparison

MC comparison with $t\bar{t} + 2b$ cuts

 N_h

NLO+PY8 tools vs Sherpa (1st ratio)

• Powheg+OpenLoops \simeq Sherpa while MG5+PY8 \simeq Powhel+PY8* 20-50% higher

NLO+Herwig tools vs Sherpa (2nd ratio)

all predictions closer to each other

does not implement h_{damp} restriction of FSR

Distortion of ligh-jet radiation spectrum (normalised to Sherpa YR4)

Current interpretation

$$\frac{\bar{B}_{\rm soft}}{B} \sim \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}} \sim 2$$

 \Rightarrow 100% distortion of jet- p_T spectrum

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_B\mathrm{d}\Phi_1} = R + \underbrace{\left[\frac{\bar{B}_{\mathrm{soft}}}{B}\Delta - 1\right]}_{\gtrsim 100\% \text{ instead of } \mathcal{O}(\alpha_S)} R_{\mathrm{soft}}$$

- $\Rightarrow \text{ effect of hard-jet recoil on } p_T \text{ of soft} \\ b\text{-jets} \text{ induces } N_b\text{-bin migrations}$
- \Rightarrow enhancement of $t\bar{t}$ +2b cross section

Depends on relative importance of soft/hard contributions

Soft/hard separation

 m_{bb}

Natural kinematic separation of $\sigma_{t\bar{t}b\bar{b}}^{\text{NLO}}$ $\frac{p_T(\text{jet})}{k_T(g \to b\bar{b})}$ $\begin{cases} < 1 & \text{soft} \\ > 1 & \text{hard} \end{cases}$

 $\Rightarrow~\sim 50\%$ of $\sigma_{
m NLO}$ soft/hard

Technical separation in NLOPS tools

- in Powheg $\sim 50\%$ soft/hard (as a result of $h_{\rm bzd})$
- in MC@NLO tools (especially MG5+PY8) soft contribution $\gtrsim 100\%$

MC uncertainties can be reduced by

• better understanding/careful treatment of large K-factor and hard radiation

Recent progress towards understanding/reduction of $t\bar{t} + b$ -jet uncertainties

- NLOPS $t\bar{t}b\bar{b}$ generators with 8 combinations of matching methods \otimes showers
- systematic framework for intrinsic MC uncertainties and MC comparisons
- increasing understanding of $t\bar{t}b\bar{b}$ multi-scale dynamics

Next steps

- address remaining aspects like perturbative shape uncertainties
- theory recommendations for $t\bar{t} + b$ -jet predictions and uncertainties
- $\bullet \ \ldots ATLAS/CMS$ feedback and implementation

Backup slides

NLOPS $t\bar{t}b\bar{b}$ 4F with SHERPA+OPENLOOPS [Cascioli et al '13]

Convergence of 4F scheme but unexpected MC@NLO enhancement

	ttb	ttbb	$ttbb(m_{bb} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2644_{-38\%}^{+71\%}_{-11\%}^{+14\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{\rm NLO}[{\rm fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{\rm MC@NLO}[{\rm fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28

Large enhancement (~30%) in Higgs region from double $g \rightarrow b\bar{b}$ splittings

One $g \to b\bar{b}$ splitting from PS

⇒ TH uncertainties related to matching, shower and 4F/5F schemes crucial!

Missing large logarithms from $g \rightarrow bb$ fragmentation? I

Probability of $g \rightarrow bb$ in a hard gluon jet [Mangano and Nason, PLB 285 (1992)]

$$\rho(Q^2, K^2) = \int_{2m_b}^Q \mathrm{d}K \, P_{g \to b\bar{b}}(K) \times n_g(Q^2, K^2)$$

 $g \to b \bar{b}$ splitting probability at virtuality $K^2 = m_{b \bar{b}}^2$

$$P_{g \to b\bar{b}}(K) = \frac{\alpha_S(K^2)}{3\pi K} \left(1 + \frac{2m_b^2}{K^2}\right) \sqrt{1 - \frac{4m_b^2}{K^2}}$$

Multiplicity of gluons with virtuality K^2 in hard-gluon jet with $p_T = Q$

$$n_g(Q^2, K^2) = \left[\frac{\ln(Q^2/\Lambda^2)}{\ln(K^2/\Lambda^2)}\right]^a \cosh\left[\sqrt{\frac{2C_A}{\pi b}} \left(\sqrt{\ln(Q^2/\Lambda^2)} - \sqrt{\ln(K^2/\Lambda^2)}\right)\right]$$

Perturbative expansion in $\alpha_S = \alpha_S(Q^2) = \left[b \ln(Q^2/\Lambda^2)\right]^{-1}$

$$\frac{\mathrm{d}\rho(Q^2, K^2)}{\mathrm{d}K} = \left. \frac{\mathrm{d}\rho(Q^2, K^2)}{\mathrm{d}K} \right|_{\mathrm{LO}} \times \left[1 + \alpha_S \left(C_1 L^2 + \dots \right) + \alpha_S^2 \left(C_2 L^4 + \dots \right) + \dots \right]$$

with double logarithms $L=\ln(K^2/Q^2)$

Missing large logarithms from $g \rightarrow b\bar{b}$ fragmentation? II

Distribution $d\rho(Q^2, K^2)/dK$ at LO, NLO and NNLO for $Q = 50 \,\text{GeV}$

- higher-order effects well approximated by NLO
- peak close to threshold $(K \gtrsim 2m_b)$ but long tail

Q[GeV]	LO	NLO	NNLO	NLO/LO	NNLO/NLO
50	2.08%	2.44%	2.51%	1.17	1.03
100	2.73%	3.50%	3.71%	1.28	1.06
500	3.84%	6.06%	7.05%	1.59	1.16

$t\bar{t}b\bar{b}$ dominated by FS $g\to b\bar{b}$ splittings $_{\rm [1802.00426]}$

 $t\bar{t}b\bar{b}$ topologies with FS $g\to b\bar{b}$ splittings

- dominant in full ttbb and ttb phase space
- notion of $g \rightarrow b\bar{b}$ splittings and IS/FS separation seems ill defined at large ΔR_{bb} , m_{bb} , $p_{T,b}$ due to sizable interferences

$t\bar{t}b\bar{b}$ topologies with IS $g \rightarrow b\bar{b}$ splittings

• mostly clearly subdominant (no need for 5F scheme resummation)

supports choice of 4F scheme with $m_b > 0$ and no *b*-quark PDF

Powheg $t\bar{t}b\bar{b}$ vs Powheg $t\bar{t}$ inclusive [1802.00426]

Plotted bands: matching+shower (no QCD scale) uncertainties only for $t\bar{t}$ generator

uncertainties beyond factor 2

• large differences in N_b , m_{bb} and jet- p_T

NLOPS

- differences strongly reduced at NLOPS ("Powheg miracle")
- $t\bar{t}$ exceeds $t\bar{t}b\bar{b}$ by only $\sim 20\%$ in N_b and m_{bb} shape is OK (100% excess in the jet- $p_{\rm T}$ tail)

Motivation for $t\bar{t}b\bar{b}$ NLOPS lies in smaller (see previous plots) and better defined theory uncertainties

Comparison of different showers and recoil schemes

 p_{T,j_1}

LOPS with different showers and recoil schemes (overall NLO normalisation)

- large MC effects may be due to the recoil effects of QCD radiation on *b*-jets
- PY8 dipole recoil scheme more consistent with NLOPS radiation spectrum, hower not supported in MC@NLO matching
- also Sherpa (with old and new recoil schemes) more consistent with NLOPS

Setup for $t\bar{t}b\bar{b}$ 4F Powheg+OpenLoops predictions [arXiv:1802.00426]

Aspects identical to HXSWG YR4

- NNPDF30_NLO_as_0118_nf_4
- $\mu_R = (E_{T,t} E_{T,\bar{t}} E_{T,b} E_{T,\bar{b}})^{1/4}$
- $\mu_F = H_T/2$,
- $h_{damp} = H_T/2$,

Matching scale variations

•
$$h_{damp} = H_T/4, H_T/2, H_T, 1.5m_t$$

• $h_{bzd} = 2, 5, 10$

Shower and PDFs for showering

- A14 Pythia tune with $\alpha_S(M_Z) = 0.127$
- NNPDF2.3 LO 5F PDFs

NLOPS subtleties for multi-scale problems [1802.00426]

Matching based on factorisation of S-radiation wrt hard $t\bar{t}b\bar{b}$ process

 $R_{
m soft}(\Phi_R) \simeq B(\Phi_B) \otimes K_{
m soft/coll}(\Phi_{
m rad})$ for $k_T < h_{
m damp} \sim m_t$

What about radiation with $p_{T,b} < k_T < h_{damp}$? Soft or hard?

- ttlbb factorisation can fail and factorising hard tt+jet subprocess can be more appropriate
- example: hard jet radiation in the direction of $b\bar{b}$ system
 - $\Phi_B \rightarrow \Phi_R$ FKS mappings $\Rightarrow b\bar{b}$ system absorbs jet recoil and becomes much softer
 - $R(\Phi_R)$ enhancement that violates ttbb factorisation
- similar issues expected also in MC@NLO matching

Powheg "safety" system: resummation only if $R_{\text{soft}} < h_{\text{bzd}} \times B \otimes K_{\text{soft/coll}}$

$$g_{\text{soft}}(\Phi_{\text{rad}}, h_{\text{damp}}, h_{\text{bzd}}) = \frac{h_{\text{damp}}^2}{h_{\text{damp}}^2 + k_T^2} \, \theta\Big(h_{\text{bzd}}B(\Phi_B) \otimes K_{\text{soft/coll}}(\Phi_{\text{rad}}) - R(\Phi_R)\Big)$$

 \Rightarrow high stability wrt $h_{\rm damp}$ variations

Dependence on resummation scale μ_Q (shortly after YR4)

Nominal MG5_aMC and Sherpa+OpenLoops predictions in YR4

• MG5_aMC supports only^{*} $\mu_Q = f(\xi)\sqrt{\hat{s}} \Rightarrow$ smearing function restricted to $0.1 < f(\xi) < 0.25$ to mimic recommended $\mu_Q = H_T/2$ implemented in Sherpa

μ_Q variations enhance the discrepancy

- $\mu_Q = \sqrt{\hat{s}}/2$ in Sherpa to mimic MG5_aMC default choice $0.1 < f(\xi) < 1$
- strong μ_Q -sensitivity of MG5_aMC \Rightarrow much more pronounced deviations

Changes in Sherpa and MG5 wrt YR4 [1610.07922]

Bottom line

- MG5+PY8 did not change significantly (in spite of $\hat{s} \rightarrow H_T$ based scalup)
- Sherpa moved in the direction of MG5+PY8
 - +35% in the jet- p_T spectrum (but little impact on inclusive shapes)
 - due to new default recoil scheme (for 2nd and higher emissions)
 - and other changes (to be clarified in detail)

Interplay of $K \gg 1$ and negative σ_H in MC@NLO

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_B} = \underbrace{\bar{B}_{\mathrm{soft}}(\Phi_B) \left[\Delta(t_{\mathrm{IR}}) + \Delta(k_T) \mathcal{K}_{\mathrm{soft}}(\Phi_1) \,\mathrm{d}\Phi_1\right]}_{\mathrm{S-events (LHE\times shower)}} + \underbrace{\left[R(\Phi_R) - B(\Phi_B) \mathcal{K}_{\mathrm{soft}}(\Phi_1)\right] \mathrm{d}\Phi_1}_{\mathrm{H-events}}$$

Soft radiation approximated by paron shower in the soft region $k_T \lesssim \mu_Q$

$$R(\Phi_R) \longrightarrow B(\Phi) \mathcal{K}_{\text{soft}}(\Phi_1) = B(\Phi) \mathcal{K}_{\text{shower}}(\Phi_1) g_{\text{soft}}(\Phi_1, \mu_Q)$$

and integrated out in

$$\bar{B}_{\text{soft}}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + B(\Phi_B) \int d\Phi_1 \mathcal{K}_{\text{soft}}(\Phi_1)$$

Matching distorted by $K\text{-factor}~\bar{B}_{\rm soft}/B\gtrsim 2$ and $\underbrace{(R-B\mathcal{K}_{\rm soft})}<0$

H-weight

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{B}\mathrm{d}\Phi_{1}} = R + \underbrace{\left[\frac{\bar{B}_{\mathrm{soft}}}{B}\Delta - 1\right]}_{\gtrsim 100\%\mathrm{distortion}} B\mathcal{K}_{\mathrm{soft}} = \underbrace{\left(\frac{\bar{B}_{\mathrm{soft}}}{B}\Delta\right)R}_{\mathrm{max\ resummation}} + \underbrace{\left[\frac{\bar{B}_{\mathrm{soft}}}{B}\Delta - 1\right]}_{\gtrsim 100\%}\underbrace{\left(B\mathcal{K}_{\mathrm{soft}} - R\right)}_{>0}$$

⇒ strongly enhanced positive correction beyond "max resummation": unphysical?

Natural separation approach

Compare hardness of $g \rightarrow b\bar{b}$ splitting to p_T of NLO radiation

• $p_T(\text{jet}) < k_T(g \to b\bar{b}) \Rightarrow \text{soft}$ • $p_T(\text{jet}) > k_T(g \to b\bar{b}) \Rightarrow \text{hard}$

• roughly 1/2 of $t\bar{t}b\bar{b}$ cross section involves a jet harder than b-jet system

• it is natural to treat it as H-contribution in NLOPS framework

Comparison of S/H separation in various tools

• Powhe: S-contribution $\sim 50\%$, i.e. comparable to $k_T(b\bar{b}) < p_T(\text{jet})$ (as a result of $h_{\rm bzd}$)

 MC@NLO tools: in Sherpa and especially in MG5+PY8, S-contribution overestimates full XS and must be compensated by negative H-contribution

Comparison of 6 MC with top decays (WW4b cuts)

Inputs (here and in the following)

- same inputs as in HXSWG YR4 (but default shower tunes)
- Iimited statistics

Features observed with stable tops confirmed

• now 20% spread of WW + 4b XS and factor-2 in jet spectrum

(present studies focussed back on stable $t\bar{t}b\bar{b}$)

Hadronisation effects in $t\bar{t}b\bar{b}$ MC comparisons

Motivation of theory studies w.o. top decays and hadornisation

- top decays are trivial (well understood EW interactions) but render the analysis of *b*-quark production in $WWb\bar{b}b\bar{b}$ final states quite cumbersome
- switching off top decays is very useful in order to investigate the QCD dynamics of *b*-production in $pp \rightarrow t\bar{t}b\bar{b}$ (which dominates TH uncertainties!)
- since top quarks carry SU(3) charge, also hadronisation needs to be switched off

Possible bias of MC comparisions?

- switching off hadronisation could bias comparisons of different showers (Pythia, Sherpa, Herwig) due to dependencies on unphysical dependences (e.g. IR cutoff)
- irrelevant for Powheg+PY8 vs MG5+PY8 comparison (same shower)
- for Sherpa vs MG5+PY8 we have assessed this effect comparing LOPS simulations of H + b-jet production (as proxy of $t\bar{t}b\bar{b}$ production) finding non-negligible but rather small hadronisation effects wrt the observed differences in $t\bar{t}b\bar{b}$ production

see https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LOpphHadronisation

NLOPS/NLO and μ_Q , hdamp dependence

- Powheg very stable
- similar trend but different μ_Q dependence in MG5+PY8, MG5+HW and Sherpa (new recoil scheme)