

$H \rightarrow b\bar{b}$ Results from the ATLAS and CMS Experiments LHCP 2018, Bologna

Andrew Bell on behalf of the ATLAS and CMS experiments

> Run: 309440 Event: 990753168 2016-09-27 14:35:10 CEST

Introduction and Overview

- Observation of the Higgs boson opened the door to a new section of the SM Lagrangian
 - Coupling to bosonic and leptonic sectors of the SM observed by ATLAS and CMS
- Direct coupling of the Higgs boson to $b\bar{b}$ is still to be observed:
 - ► ATLAS+CMS 7+8 TeV yields an observed (expected) significance of 2.6 (3.7) σ for $H \rightarrow b\bar{b}$
 - ► Very important to confirm the Yukawa coupling of the Higgs to the quark sector → is this Higgs the SM Higgs?
- With $m_H = 125$ GeV, $H \rightarrow b\bar{b}$ is predicted to be the largest decay mode ($\sim 58\%$)¹:
 - Large QCD multijet background makes observation very challenging
- Current measurements leave room for BSM physics:
 - $H
 ightarrow b ar{b}$ drives the uncertainty on the total decay width
- Number of different Higgs production modes for exploring the $H \rightarrow b\bar{b}$ decay, but each has limitations

¹LHCHXSWG

Higgs Production Modes

Gluon-gluon fusion (ggF)

- Largest Higgs production mode at the LHC
- High multijet background \rightarrow challenging S/B
- CMS search for boosted $H \rightarrow b\bar{b}$

VH

- Associated production of Higgs with a vector boson (V = W/Z)
- Trigger on leptonic decays of V to improve S/B and reduce multijet contamination
- Main search channel for H o b ar b at the LHC
- Recent Run-2 ATLAS and CMS results

Vector-boson fusion (VBF)

- Signature contains two VBF jets
- Large multijet background
- Can trigger using an additional photon to improve S/B (ATLAS-CONF-2016-063)

- Use leptonic decays of top to trigger
- Combinatorics and $t\bar{t} + b\bar{b}$ background prove to be very challenging
- Dedicated ATLAS and CMS talks

Boosted $H \rightarrow b\bar{b}$ at CMS (1709.05543)

- Direct search for $gg
 ightarrow H
 ightarrow b ar{b}$ events
- Background from QCD production of b-quarks has a cross-section 10⁷ times larger
- For sufficient boost, *b*-jets merge into a single R = 0.8 jet (jet $p_{\rm T} > 450$ GeV)
- Use *b*-tagging to identify two *b*-hadrons within the large *R* jet:
 - Signal strength determined from maximum likelihood fit to the mass distribution
 - Simultaneous fit to $Z \rightarrow b\bar{b}$ and $H \rightarrow b\bar{b}$
- Observation of $Z \rightarrow b\bar{b}$ process (5.1 σ):
 - 1.5 σ significance for $H \rightarrow b\bar{b}$
 - Promising given the overwhelming QCD background
- Leading systematic uncertainties from Higgs $p_{\rm T}$ correction and jet energy scale

Process	Expected Significance	Observed Significance
$Z ightarrow b ar{b}$	5.8 <i>o</i>	5.1σ
$H ightarrow b \overline{b}$	0.7 σ	1.5 σ

Boosted $H \rightarrow b\bar{b}$ at CMS (1709.05543)

- Direct search for $gg
 ightarrow H
 ightarrow bar{b}$ events
- Background from QCD production of b-quarks has a cross-section 10⁷ times larger
- For sufficient boost, b-jets merge into a single R = 0.8 jet (jet p_T > 450 GeV)
- Use *b*-tagging to identify two *b*-hadrons within the large *R* jet:
 - Signal strength determined from maximum likelihood fit to the mass distribution
 - Simultaneous fit to $Z \rightarrow b\bar{b}$ and $H \rightarrow b\bar{b}$
- Observation of $Z \rightarrow b\bar{b}$ process (5.1 σ):
 - 1.5 σ significance for $H \rightarrow b\bar{b}$
 - Promising given the overwhelming QCD background
- Leading systematic uncertainties from Higgs p_T correction and jet energy scale

Process	Expected Significance	Observed Significance
$Z ightarrow bar{b}$	5.8 σ	5.1 σ
$H ightarrow b \overline{b}$	0.7 σ	1.5σ

VBF $H \rightarrow b\bar{b}$ at **ATLAS** in Run-2 (NEW!)

- Three analysis channels:
 - Two-central at least one VBF jet with 3.2 < |η| < 4.4, two b-tagged jets in central detector region
 - Four-central VBF and b-tagged jets in central detector region
 - Photon VBF within detector acceptance, b-tagged jets in central region, with an additional photon (next slide)
- Use a BDT discriminant to separate signal events from background:
 - Trained using a combination of 14 input variables (channel dependent)
 - \rightarrow Mass agnostic
 - Divide BDT output into categories of sensitivity
 - Regions optimised for sensitivity to $H
 ightarrow bar{b}$
- Likelihood fit to mbb distribution in signal regions
- Analysis is sensitive to both inclusive and VBF $H \rightarrow b \bar{b}$ production

VBF+ $\gamma H \rightarrow b\bar{b}$ at **ATLAS**

- Search for VBF, with an additional high p_T photon:
 - New analysis for Run-2
 - Provides a clean trigger signature
 - Greatly suppresses background processes (no photon radiation in gluon-gluon induced background)
- Require 2 VBF jets, 2 b-tagged jets, and 1 photon
- Previously published in ATLAS-CONF-2016-063:
 - Result updated for combination with VBF $H \rightarrow b\bar{b}$ analysis
- Use a BDT discriminant to separate signal events from background:
 - ► Trained using 9 input variables → mass agnostic
 - Divide BDT output into three categories of sensitivity (low, medium, high)

Example Feynman diagram

VBF $H \rightarrow b\bar{b}$ at **ATLAS**

• Systematic uncertainties from non-resonant background modelling and signal modelling:

- Dominant uncertainty from limited number of data events \rightarrow will benefit from more luminosity
- Observed (expected) 95% CL upper limit for VBF $H \rightarrow b\bar{b}$ set at $5.9(3.0^{+1.3}_{-0.8})$ SM cross-section

Earlier VBF Results

• Number of earlier Run-2 and Run-1 VBF results (without photon requirement)

Analysis	Expected Limit	Observed Limit	Signal Strength	Reference
CMS Run-1	2.5	5.5	$2.8^{+1.6}_{-1.4}$	1506.01010
CMS Run-2 (2.32 fb $^{-1}$)	5.0	3.0	$-3.7^{+2.4}_{-2.5}$	HIG-16-003
CMS Run-1+2	2.3	3.4	$1.3^{+1.2}_{-1.1}$	HIG-16-003
ATLAS Run-1	5.4	4.4	-0.8 ± 2.3	1606.02181

Work underway to include full Run-2 datasets

$VH(\rightarrow b\bar{b})$ Overview

- $VH(
 ightarrow bar{b})$ offers the best sensitivity to $H
 ightarrow bar{b}$ at the LHC
- Leptonic decays of the vector boson (V = W/Z) provides a way to both trigger and reduce multijet background:
 - Three channels: 0- $(Z \to \nu \bar{\nu})$, 1- $(W \to \ell \nu)$ and 2-lepton $(Z \to \ell \bar{\ell})$
- Results have been published by ATLAS and CMS, using 2015+2016 datasets recorded at $\sqrt{s} = 13$ TeV (36.1 fb⁻¹ and 35.9 fb⁻¹, respectively):

 $\rightarrow~$ Will be the main focus of this talk

Analysis	Expected Significance	Observed Significance	Reference
Tevatron (D0 + CDF)	1.9	3.0	1207.6436
CMS (Run-1)	2.1	2.1	1310.3687
ATLAS (Run-1)	2.6	1.4	1409.6212
ATLAS+CMS (Run-1)	3.7	2.6	1606.02266

$VH(\rightarrow b\bar{b})$ Analysis Selections (ATLAS and CMS)

Vector Boson Selections

- In both analyses, channels divided by exact number of charged leptons
- 0-lepton also includes a number of anti-QCD cuts
- Only electrons or muons are considered

	0-lepton	1-lepton	2-lepton
ATLAS	$p_{\mathrm{T}}^V > 150 \mathrm{GeV}$	$p_{\mathrm{T}}^V > 150 \mathrm{GeV}$	$p_{\rm T}^V > 75 { m GeV}$
CMS	$p_{\mathrm{T}}^V > 170 \; \mathrm{GeV}$	$p_{\mathrm{T}}^V > 100 \; \mathrm{GeV}$	p_{T}^{V} > 50 GeV

Higgs Selection

- Exactly 2 *b*-tagged jets:
 - ATLAS MV2c10, 70% b-jet efficiency
 - CMS CMVA, 50-75% b-jet efficiency
- 2-/3-jet analysis regions (≥ 3-jets in 2-lepton channel)

Binned profile likelihood fit to a set of BDT discriminants

• Number of signal and control regions

Backgrounds

- $t\bar{t}$ present in all channels
 - In 0- and 1-lepton, have missed an object (jet or lepton)
 - ▶ In 2-lepton, dileptonic $t\bar{t}$ contributes directly
- Z + jets dominant in 0- and 2-lepton channels
- W + jets significant in 0- and 1-lepton channels
- Smaller contributions from: Single top, multijet and diboson ($VZ(\rightarrow b\bar{b})$ used to validate analysis)

Multivariate analysis (ATLAS)

- m_{bb} is single most discriminating variable for $VH(\rightarrow b\bar{b})$ signal:
 - Construct BDT of several variables to boost sensitivity
 - *m_{bb}*, Δ*R*(*b*, *b*) and *p^V*_T most important variables

- Separate training for each signal region:
 - 8 signal regions
 - 2 W + HF CR² in 1-lepton
 - ▶ 4 top eµ CR in 2-lepton (m_{bb}) (~ 99% pure)

Variable	0-lepton	1-lepton	2-lepton	
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	Х	
$E_{\rm T}^{\rm miss}$	×	×	×	
$p_{T}^{b_{1}}$	×	×	×	
$p_{T}^{b_{2}}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(\vec{b}_1, \vec{b}_2)$	×	×	×	
$ \Delta\eta(\vec{b}_1,\vec{b}_2) $	×			
$\Delta \phi(\vec{V}, \vec{bb})$	×	×	×	
$ \Delta \eta(\vec{V}, \vec{bb}) $			×	
$m_{\rm eff}$	×			
$\min[\Delta \phi(\vec{\ell}, \vec{b})]$		×		
m_{T}^{W}		×		
$m_{\ell\ell}$			×	
$m_{\rm top}$		×		
$ \Delta Y(\vec{V}, \vec{bb}) $		×		
	Only in 3-jet events			
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×	
m_{bbj}	×	×	×	

 ^{2}W + HF = W + bb, W + bc, W + bl, W + cc

Fitted μ_{VH} and significance (ATLAS)

- Results from fit $VH(\rightarrow b\bar{b})$ signal
- Top right: fitted signal strengths for WH/ZH
 - ~ 75% compatibility between WH/ZH
- Bottom right: Bins organised by S/B ratio
 - 3.5 (3.0) σ observed (expected) significance
 - Evidence of $VH(\rightarrow b\bar{b})$
 - Uncertainties dominated by systematic uncertainties

Dataset	p_0		Significance	
Dataset	Exp.	Obs.	Exp.	Obs.
0-lepton	4.2%	30%	1.7	0.5
1-lepton	3.5%	1.1%	1.8	2.3
2-lepton	3.1%	0.019%	1.9	3.6
Combined	0.12%	0.019%	3.0	3.5

Fitted μ_{VH} and significance (ATLAS)

- *m*_{bb} distribution from dijet mass analysis
- Dijet mass analysis signal strength consistent with SM:
 - $\rightarrow \mu_{VH} = 1.30^{+0.28}_{-0.27} (\text{stat.})^{+0.37}_{-0.29} (\text{syst.})$
 - From fit to m_{bb}, measure 3.5 (2.8) σ observed (expected) significance
 - Strong validation of BDT analysis, with visible $H \rightarrow b\bar{b}$ peak
 - More details in back-up

Combination with Run-1 results (ATLAS)

- Run-2 analysis combined with Run-1 result
- Decorrelation tests conducted for JES and *b*-tagging systematics:
 - Found to have negligible impact
 - Only signal and b-jet energy scale uncertainties correlated between Run-1 and Run-2
- Bins ordered by S/B for combined Run-1 + Run-2 VH fit (bottom left)
- Compare μ when fitting WH and ZH (bottom right):
 - 34% compatibility between WH and ZH
- Final observed (expected) significance of 3.6 (4.0) σ
- $\mu = 0.90 \pm 0.18 (\text{stat.})^{+0.21}_{-0.19} (\text{syst.})$

Multivariate Analysis (CMS)

- Similarly to ATLAS, CMS trains a BDT to improve signal sensitivity
- Train BDT on a combination of 22 variables (channel dependent)
- Example output for 0-lepton, 1-muon and 2-muon regions
- Cut on BDT output applied as part of event selection:
 - Target regions with increased S/B

Variable	Description	Channels
M(jj)	dijet invariant mass	All
$p_{\rm T}(jj)$	dijet transverse momentum	All
$p_{T}(j_{1}), p_{T}(j_{2})$	transverse momentum of each jet	0- and 2-lepton
$\Delta R(jj)$	distance in $\eta - \phi$ between jets	2-lepton
$\Delta \eta(jj)$	difference in η between jets	0- and 2-lepton
$\Delta \phi(jj)$	azimuthal angle between jets	0-lepton
$p_{\rm T}(V)$	vector boson transverse momentum	All
$\Delta \phi(V, jj)$	azimuthal angle between vector boson and dijet directions	All
$p_T(jj)/p_T(V)$	p _T ratio between dijet and vector boson	2-lepton
$M(\ell \ell)$	reconstructed Z boson mass	2-lepton
CMVA _{max}	value of CMVA discriminant for the jet	0- and 2-lepton
	with highest CMVA value	
CMVAmin	value of CMVA discriminant for the jet	All
	with second highest CMVA value	
CMVAadd	value of CMVA for the additional jet	0-lepton
	with highest CMVA value	-
p_T^{miss}	missing transverse momentum	1- and 2-lepton
$\Delta \phi(\vec{p}_T^{miss}, j)$	azimuthal angle between \vec{p}_T^{miss} and closest jet ($p_T > 30 \text{ GeV}$)	0-lepton
$\Delta \phi(\vec{p}_T^{\text{miss}}, \ell)$	azimuthal angle between \vec{p}_T^{miss} and lepton	1-lepton
m _T	mass of lepton $\vec{p}_T + \vec{p}_T^{miss}$	1-lepton
mtop	reconstructed top quark mass	1-lepton
Naj	number of additional jets	1- and 2-lepton
$p_{T}(add)$	transverse momentum of leading additional jet	0-lepton
SA5	number of soft-track jets with $p_T > 5 \text{ GeV}$	All

Backgrounds and Control Regions (CMS)

- Several background processes present in all channels:
 - tt in all channels
 - Z + jets in 0- and 2-lepton
 - ▶ W+jets in 0- and 1-lepton
 - Smaller contributions from single-top, multijet and diboson

- Dedicated control regions in each channel for (defined in back-up):
 - 0-lepton: $t\overline{t}$, Z + HF, Z + LF
 - 1-lepton: $t\overline{t}$, W + HF, W + LF
 - 2-lepton: $t\bar{t}$, Z + HF, Z + LF
- Combine all SRs and CRs into a single maximum likelihood fit:
 - BDT discriminant output for SRs
 - Sub-leading jet b-tagging discriminant for CRs
- As in ATLAS analysis, use $VZ(\rightarrow b\bar{b})$ background as a validation (details in back-up)

$VH(\rightarrow b\bar{b})$ Results (CMS)

- Now look to extract $VH(\rightarrow b\bar{b})$ signal strength
- Observed signal strength $\mu_{VH} = 1.19^{+0.21}_{-0.20} (\text{stat.})^{+0.34}_{-0.32} (\text{syst.})$
- Corresponds to an observed (expected) significance of 3.3 (2.8) σ :
 - Evidence of $VH(\rightarrow b\bar{b})$
 - Uncertainties dominated by systematic uncertainties

Bins organised by S/B ratio, combined VH fit to all channels

$VH(\rightarrow b\bar{b})$ Results (CMS)

- Now look to extract $VH(
 ightarrow bar{b})$ signal strength
- Observed signal strength $\mu_{VH} = 1.19^{+0.21}_{-0.20} (\text{stat.})^{+0.34}_{-0.32} (\text{syst.})$
- Corresponds to an observed (expected) significance of 3.3 (2.8) σ :
 - Evidence of $VH(\rightarrow b\bar{b})$
 - Uncertainties dominated by systematic uncertainties

		Channels	Significance	Significance	
			expected	observed	
		0-lepton	1.5	0.0	
		1-lepton	1.5	3.2	
		2-lepton	1.8	3.1	
		Combined	2.8	3.3	
				35.9 fb ⁻¹ (13 T	eV)
ies	F	CMS		Data	Ť,
Ē		OMO		VH(bb̄) (μ=1.2)	1
<u>е</u>	200	-		VZ(bb)	-
ĕ	ŀ	$pp \rightarrow vH, I$	$H \rightarrow DD$	MC uncertaint	y -
Ë	150		, [-
ē	150				-
3			+ 1		1
Ξ.	100				_
க்	100		1		-
<u>x</u>	F	-	I		-
0,	50	-			-
			0000		1
				day.	1
	0				
	ŀ	•		φo.	-
					. 1
	-50	50	100	150 200	250
	0		100		ieV1
				M _{jj} [O	
m	u dist	tribution fo	r most sensi	tive region $\rightarrow v$	/isihle

 m_{bb} distribution for most sensitive region ightarrow visible $VH(
ightarrow bar{b})$ peak

Run-1 Combination (CMS)

- Combined Run-2 $VH(\rightarrow b\bar{b})$ result with Run-1 measurement
- All uncertainties assumed to be uncorrelated, expect for signal uncertainties:
 - \rightarrow Treating as uncorrelated has a negligible impact on signal significance

Data used	Significance	Significance	Signal strength
	expected	observed	observed
Run 1	2.5	2.1	$0.89\substack{+0.44\\-0.42}$
Run 2	2.8	3.3	$1.19\substack{+0.40 \\ -0.38}$
Combined	3.8	3.8	$1.06\substack{+0.31\\-0.29}$

- Final observed (expected) significance of 3.8 (3.8) σ
- Combined signal strength:
 - $\mu_{VH}^{CMS} = 1.06^{+0.31}_{-0.29}$
- Similar precision to ATLAS measurement:
 - $\mu_{VH}^{\text{ATLAS}} = 0.90^{+0.28}_{-0.26}$

Conclusions

- The coupling of the Higgs boson to $b\bar{b}$ is still to be directly observed
- A number of very interesting results from ATLAS and CMS have helped to push us closer to observation:
 - ▶ Boosted CMS $H \rightarrow b\bar{b} + ISR$ jet observed 1.5 σ significance from background-only model
 - ▶ Updated VBF analysis by ATLAS has been able to set a limit of 5.9 times the SM cross-section
- Results using the 2015+2016 LHC datasets at $\sqrt{s}=$ 13 TeV have given first evidence of $VH(\to b\bar{b})$ process at the LHC
- In combination with Run-1 data:
 - > ATLAS measured a 3.6 (4.0) σ significance over the background only model
 - CMS measured a 3.8 (3.8) σ significance over the background only model
 - Uncertainties in both analyses are dominated by systematic uncertainties
- Results compatible between both analyses
- Analyses cross-checked using $VZ(\rightarrow b\bar{b})$ process \rightarrow both ATLAS and CMS achieve observation of $VZ(\rightarrow b\bar{b})$
- Work ongoing to reach observation

1-lepton $VH(-b\bar{b})$ candidate

EXPER

11

Run: 30.

Event: 2810362531

2016-07-09/03:06:16 CEST

Back-up

Boosted $H \rightarrow b\bar{b}$ Systematic Uncertainties

Systematic source	W/Z	Н
Integrated luminosity	2.5%	2.5%
Trigger efficiency	4%	4%
Pileup	<1%	<1%
$N_2^{1,\text{DDT}}$ selection efficiency	4.3%	4.3%
Double-b tag	4% (Z)	4%
Jet energy scale / resolution	10/15%	10/15%
Jet mass scale $(p_{\rm T})$	$0.4\%/100 \text{GeV}(p_{\mathrm{T}})$	$0.4\%/100 \text{GeV}(p_{\mathrm{T}})$
Simulation sample size	2-25%	4–20% (ggF)
H $p_{\rm T}$ correction	—	30% (ggF)
NLO QCD corrections	10%	_
NLO EW corrections	15-35%	_
NLO EW W/Z decorrelation	5-15%	—

$VH(\rightarrow b\bar{b})$ Analysis Overview (ATLAS)

Vector Boson Selections

• 0-lepton:

- Exactly 0 charged leptons
- $\blacktriangleright E_{\rm T}^{\rm miss} > 150 \,\,{\rm GeV}$
- Several anti-QCD cuts

• 1-lepton:

- Exactly 1 charged lepton (e/µ)
- ▶ $p_{\rm T}^V > 150 \, {\rm GeV}$
- 2-lepton:
 - Exactly 2 charged leptons (ee/µµ)
 - ▶ m_{ℓℓ} compatible with m_Z
 - $p_{\rm T}^V > 75 \,\,{\rm GeV}$

Higgs Selection

- Exactly 2 b-tagged jets (MV2c10, 70% b-jet efficiency)
- 2-/3-jet analysis regions
 (≥ 3-jets in 2-lepton channel)

Binned profile likelihood fit to a set of BDT discriminants (Slide 11)

Number of signal and control regions (Slide 29)

$VH(\rightarrow b\bar{b})$ Analysis Overview (ATLAS)

b-jet energy corrections

- Apply additional corrections to account for:
 - Muon-in-jet and *b*-jet energy response
 - In 2-lepton channel, use a kinematic likelihood fit (all objects are reconstructed)
- Improve m_{bb} resolution by $\sim 18\%$
- 42% improvement with kinematic fit in 2-lepton channel

Vector Boson Selections

- 0-lepton:
 - Exactly 0 charged leptons
 - $E_{\rm T}^{\rm miss} > 150 \ {\rm GeV}$
 - Several anti-QCD cuts
- 1-lepton:
 - Exactly 1 charged lepton (e/µ)
 - ▶ $p_{\rm T}^V > 150 \,\,{\rm GeV}$
- 2-lepton:
 - Exactly 2 charged leptons (ee/µµ)
 - ▶ m_{ℓℓ} compatible with m_Z
 - $\triangleright p_{\mathrm{T}}^{V} > 75 \text{ GeV}$

Higgs Selection

- Exactly 2 b-tagged jets (MV2c10, 70% b-jet efficiency)
- 2-/3-jet analysis regions
 (≥ 3-jets in 2-lepton channel)

Binned profile likelihood fit to a set of BDT discriminants (Slide 11)

Number of signal and control regions (Slide 29)

Fit model: Floating normalisations

- Overview of fit model concept
- 5 floating background normalisations for:
 - tt
 tt
 (0+1 lepton, 2-lepton 2-jet, 2-lepton 3+-jet)
 - ▶ W + HF, Z + HF (2-jet, 3-jet)
- $t\bar{t}$ contribution is very different in 0- and 1-lepton to 2-lepton case:
 - ▶ In 0- and 1-lepton, have missed an object (jet or lepton) \rightarrow one common floating normalisation
 - In 2-lepton, dileptonic $t\bar{t}$ contributes directly \rightarrow top $e\mu$ CR can constrain normalisation in 2-/3+-jet
- Normalisation driven by a region, with appropriate extrapolation uncertainties

Fit model: Floating normalisations

- Overview of fit model concept
- 5 floating background normalisations for:

 - W + HF, Z + HF (2-jet, 3-jet)
- $t\bar{t}$ contribution is very different in 0- and 1-lepton to 2-lepton case:
 - ▶ In 0- and 1-lepton, have missed an object (jet or lepton) \rightarrow one common floating normalisation
 - In 2-lepton, dileptonic $t\bar{t}$ contributes directly \rightarrow top $e\mu$ CR can constrain normalisation in 2-/3+-jet
- Normalisation driven by a region, with appropriate extrapolation uncertainties

 $H \rightarrow b\bar{b}$ (ATLAS+CMS)

Fit model: Floating normalisations

- Overview of fit model concept
- 5 floating background normalisations for:

 - ▶ W + HF, Z + HF (2-jet, 3-jet)
- $t\bar{t}$ contribution is very different in 0- and 1-lepton to 2-lepton case:
 - ▶ In 0- and 1-lepton, have missed an object (jet or lepton) \rightarrow one common floating normalisation
 - In 2-lepton, dileptonic $t\bar{t}$ contributes directly \rightarrow top $e\mu$ CR can constrain normalisation in 2-/3+-jet
- Normalisation driven by a region, with appropriate extrapolation uncertainties

 $H \rightarrow b\bar{b}$ (ATLAS+CMS)

(University College London)

Fit model

- Binned maximum likelihood fit to extract signal significance and strength:
 - 8 signal regions
 - ▶ 2 W + HF CR³ in 1-lepton (yield only) (m_{top}^4 > 225 GeV && m_{bb} < 75 GeV) (~ 75% pure)
 - 4 top $e\mu$ CR in 2-lepton (m_{bb}) (~ 99% pure)
 - 2-lepton channel includes > 3 jet multiplicities

		Categories			
Channel	SB/CB	75 GeV	$V < p_{\mathrm{T}}^{V} < 150 \ \mathrm{GeV}$	$p_{\mathrm{T}}^{V} > 1$	$50 \mathrm{GeV}$
Chamici	511/011	2 jets	3 jets	2 jets	3 jets
0-lepton	SR	-	-	BDT	BDT
1-lepton	\mathbf{SR}	-	-	BDT	BDT
2-lepton	\mathbf{SR}	BDT	BDT	BDT	BDT
1-lepton	W + HF CR	-	-	Yield	Yield
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}

- Validation, diboson (back-up):
 - Retrain BDT to $VZ(\rightarrow b\bar{b})$ signal
- Validation, dijet mass analysis (back-up):
 - Additional split at $p_{\mathrm{T}}^{\mathrm{V}}$ > 200 GeV
 - ► Tighter ∆R(b, b) selection applied
 - Fit to m_{bb} distribution
- $^{3}W + HF = W + bb, W + bc, W + bl, W + cc$

 ${}^4m_{
m top}$ is the invariant mass of the lepton, neutrino and jet with the lowest invariant mass

ATLAS: Ranking and Breakdown

- Middle shows numerical breakdown of uncertainties:
 - Systematically dominated
- Far right presents impact of systematic on μ , ordered by postfit impact
- Main contributions from:
 - Signal acceptance
 - W + jets p_{T}^{V} modelling (1-lepton)
 - b-tagging

Source of u	ncertainty	σ_{μ}
Total		0.39
Statistical		0.24
Systematic		0.31
Experiment	al uncertainties	
Jets		0.03
E_T^{miss}		0.03
Leptons		0.01
	L h linta	0.00
h togeting	o-jets	0.09
o-tagging	light jote	0.04
	ortrapolation	0.04
	extrapolation	0.01
Pile-up		0.01
Luminosity		0.04
Theoretical	and modelling une	ertainties
Signal		0.17
Floating no	rmalisations	0.07
$Z \pm iots$	indinouteronic)	0.07
$W \pm iots$	0.07	
tī.	0.07	
Single top o	0.08	
Diboson		0.02
Multijet		0.02
,		
MC statistical		0.13

Validations of Fit: $VZ(\rightarrow b\bar{b})$ (ATLAS)

- Train BDT to select $VZ(\rightarrow b\bar{b})$ signal:
 - Otherwise identical setup and configuration as VH(→ bb) fit
- Top right: Bins organised by S/B ratio, combined VZ fit to all channels
 - $\rightarrow \mu_{VZ} = 1.11^{+0.12}_{-0.11} (\text{stat.})^{+0.22}_{-0.19} (\text{syst.})$
 - 99% compatibility between channels
 - 5.8 (5.3) σ observed (expected) significance
 - Observation of $VZ(\rightarrow b\bar{b})$

Fit 1 common signal strength and 3 decorrelated signal strengths per channel

Validation of Fit: dijet mass analysis

- Additional cross-check of fit using fit to mbb
- Tightened event selection:
 - Additional region with split at p^V_T = 200 GeV
 - Merge W + HF CR into 1-lepton SR
- Top right shows background subtracted m_{bb} for all regions, from cut based fit
 - Each region weighted by Higgs S/B
- Dijet mass analysis signal strength consistent with SM:

 $\rightarrow \mu_{VH} = 1.30^{+0.28}_{-0.27} (\text{stat.})^{+0.37}_{-0.29} (\text{syst.})$

- 3.5 (2.8) σ observed (expected) significance
- Bottom right: Very consistent signal strengths from dijet mass and MVA fits

Channel					
Selection 0-lepton 1-lepton 2-lepton					
m_{T}^{W}	-	< 120 GeV	-		
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$	-	-	$< 3.5 \sqrt{\text{GeV}}$		

p_T^V regions				
p_{T}^{V}	(75, 150] GeV	(150, 200] GeV	$(200, \infty)$ GeV	
	(2-lepton only)			
$\Delta R(\vec{b}_1, \vec{b}_2)$	<3.0	<1.8	<1.2	

Cut based vs. MVA fit

$VH(\rightarrow b\bar{b})$ Analysis Overview (CMS)

• CMS analysis also targets leptonic decays of W/Z bosons

Vector Boson Selections

- 0-lepton:
 - Exactly 0 charged leptons
 - $\blacktriangleright E_{\rm T}^{\rm miss} > 170 \; {\rm GeV}$
 - Several anti-QCD cuts
- 1-lepton:
 - Exactly 1 charged lepton (e/µ)
 - $p_{\mathrm{T}}^V > 100 \text{ GeV}$
- 2-lepton:
 - Exactly 2 charged leptons (ee/µµ)
 - ▶ m_{ℓℓ} compatible with m_Z
 - $\blacktriangleright p_{\rm T}^{\vec{V}} > 50 \text{ GeV}$

Higgs Selection

- Exactly 2 b-tagged jets (CMVA, 50-75% b-jet efficiency)
- 2-/3-jets (≥ 3-jets in 2-lepton channel)

$VH(\rightarrow b\bar{b})$ Analysis Overview (CMS)

b-jet energy corrections

- Apply additional corrections using:
 - **Kinematics:** Jet p_{T} , energy, leading charged tracks, etc.
 - *b*-jet specific: soft lepton $p_{\rm T}$, $p_{\rm T}$ of secondary vertex
- m_{bb} resolution improved by $\sim 10\%$

Vector Boson Selections

- 0-lepton:
 - Exactly 0 charged leptons
 - $\blacktriangleright E_{\rm T}^{\rm miss}$ > 170 GeV
 - Several anti-QCD cuts

1-lepton:

- Exactly 1 charged lepton (e/µ)
- ▶ p^V_T > 100 GeV
- 2-lepton:
 - Exactly 2 charged leptons (ee/µµ)
 - ▶ m_{ℓℓ} compatible with m_Z
 - ▶ $p_{\rm T}^V > 50$ GeV

Higgs Selection

- Exactly 2 b-tagged jets (CMVA, 50-75% b-jet efficiency)
- 2-/3-jet analysis regions
 (≥ 3-jets in 2-lepton channel)

Detailed CMS $VH(\rightarrow b\bar{b})$ Event Selection

Variable	0-lepton	1-lepton	2-lepton
$p_{\rm T}({\rm V})$	> 170	> 100	[50, 150], > 150
$M(\ell\ell)$	-	-	[75, 105]
	-	(> 25, > 30)	> 20
$p_{\mathrm{T}}(j_1)$	> 60	> 25	> 20
$p_{\mathrm{T}}(j_2)$	> 35	> 25	> 20
$p_{\rm T}(jj)$	> 120	> 100	-
M(jj)	[60, 160]	[90, 150]	[90, 150]
CMVA max	> 0.9432	> 0.9432	> -0.5884
CMVA _{min}	> -0.5884	> -0.5884	> -0.5884
N_{aj}	< 2	< 2	-
$N_{a\ell}$	= 0	= 0	-
E_{T}^{miss}	> 170	-	-
Anti-QCD	Yes	-	-
$\Delta \phi(V, H)$	> 2.0	> 2.5	> 2.5
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}_{\rm trk})$	< 0.5	-	-
$\Delta \phi(E_T^{miss}, \ell)$	-	< 2.0	-
Lepton Isolation	-	< 0.06	-
Event BDT	> -0.8	> 0.3	> -0.8

Detailed CMS $VH(\rightarrow b\bar{b})$ Control Region Selection

Variable	tī	Z+LF	Z+HF
V Decay Category			
$p_{\mathrm{T}}(j_1)$	> 60	> 60	> 60
$p_T(j_2)$	> 35	> 35	> 35
$p_{\rm T}(jj)$	> 120	> 120	> 120
E_T^{miss}	> 170	> 170	> 170
$\Delta \phi(V, H)$	> 2	> 2	> 2
$N_{a\ell}$	≥ 1	= 0	= 0
Naj	≥ 2	≤ 1	≤ 1
M(jj)	_	_	$\notin [60 - 160]$
CMVA _{max}	> 0.4432	< 0.4432	> 0.9432
CMVAmin	> -0.5884	> -0.5884	> -0.5884
$\Delta \phi(j, E_T^{miss})$	_	> 0.5	> 0.5
$\Delta \phi(E_T^{\text{miss}}, E_T^{\text{miss}}_{\text{trk}})$	_	< 0.5	< 0.5
$\min \Delta \phi(\mathbf{j}, E_{\mathrm{T}}^{\mathrm{miss}})$	$< \pi/2$	-	-

Variable	tī	W+LF	W+HF
$p_T(j_1)$	> 25	> 25	> 25
$p_{T}(j_{2})$	> 25	> 25	> 25
$p_{\rm T}(jj)$	> 100	> 100	> 100
$p_{\rm T}(V)$	> 100	> 100	> 100
CMVAmax	> 0.9432	[-0.5884, 0.4432]	> 0.9432
Nai	> 1	· · ·	= 0
Nal	= 0	= 0	= 0
METsig	-	> 2.0	> 2.0
$\Delta \phi(E_T^{\text{miss}}, \ell)$	< 2	< 2	< 2
M(jj)	< 250	< 250	< 90 (low) or [150, 250] (high)

1-lepton control region selections

0-lepton control region selections

Variable	tī	Z+LF	Z+HF
$p_{\rm T}(jj)$	> 100	> 100	-
$p_{\rm T}(V)$	[50, 150],> 150	[50, 150],> 150	[50, 150],> 150
CMVA max	> 0.9432	< 0.9432	> 0.9432
CMVA min	> -0.5884	< -0.5884	> -0.5884
N_{aj}	-	-	-
$N_{a\ell}$	-	-	-
E_T^{miss}	-	-	< 60
$\Delta \phi(V, H)$	-	-	> 2.5
$M(\ell \ell)$	∉ [0,10], ∉ [75,120]	[75, 105]	[85,97]
M(jj)			∉ [90, 150]

2-lepton control region selections

Validations of Fit: $VZ(\rightarrow b\bar{b})$ (CMS)

- Using equivalent analysis procedure, extract $VZ(\rightarrow b\bar{b})$ signal strength
- Modify mbb cut and retrain BDTs
- Observed signal strength $\mu_{VZ} = 1.02^{+0.23}_{-0.22}$
- Corresponds to an observed (expected) significance of 5.0 (4.9) σ :
 - Observation of $VZ(\rightarrow b\bar{b})$

Channels	Significance	Significance	Signal strength
	expected	observed	observed
0-lepton	3.1	2.0	0.57 ± 0.32
1-lepton	2.6	3.7	1.67 ± 0.47
2-lepton	3.2	4.5	1.33 ± 0.34
Combined	4.9	5.0	1.02 ± 0.22

Bins organised by S/B ratio, combined VZ fit to all channels

Systematic Uncertainties (CMS)

• Uncertainty in measured signal strength is dominated by systematic uncertainties

- Contributions from experimental systematic uncertainties:
 - Background scale factors
 - b-jet tagging related uncertainties
 - Jet energy scale
- Contributions from MC and theory uncertainties:
 - Limited number of simulated events
 - Signal and background modelling uncertainties

		Individual contribution	Effect of removal to
Source	Type	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors (tt, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties (single-top, VV)	norm.	4.7	1.1
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1

EXPERIMENT

0-lepton $VH(\rightarrow b\bar{b})$ candidate

Run: 284213 Event: 1927020336 2015-10-31 04:17:36 CEST

