

Bologna, 6 June 2018

Higgs measurements and searches as a portal to new physics

Dario Buttazzo

based on work in collaboration with F. Sala and A. Tesi

£ " 1

Higgs properties

- Higgs couplings currently measured with ~ 10% precision
- HL-LHC will be able to reach a precision of a few %
- differential measurements start to be possible, more than just Higgs signal strenghts...

- What are the implications for motivated models of new physics?
- How do direct searches compare with these results?

Composite Higgs: a typical example

 Strong coupled physics generates operators of higher dimension that modify Higgs interactions

$$\mathcal{L}_{\text{SM-EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

(see talk by L. Silvestrini)

 Model-independent predictions, from symmetry arguments: symmetry that controls the size of coefficients c_i, broken at a scale f, Higgs is a (pseudo) Goldstone

coupling to vectors

 $\kappa_V \sim \sqrt{1 - \frac{v^2}{f^2}}$

(coupling to fermions more model-dependent)

• In general, $\delta g_{hXX} \sim v^2/f^2 \sim 1/\Delta_{\rm f.t.}$

H

direct connection with tuning of the EW scale Higgs couplings can be modified at tree-level, from mixing with another state

mass eigenstates:

$$h \sim H_1 \cos \theta + H_2 \sin \theta$$
$$\phi \sim -H_1 \sin \theta + H_2 \cos \theta$$

 $g_{hXX} \sim g_{H_1XX} \cos \theta + g_{H_2XX} \sin \theta$

- Example: the MSSM (more in general, 2HDM)
 - A light state is excluded by the Higgs fit
 - Large tuning required by m_h = 125 GeV independent from coupling modification!

Less minimal SUSY

Add a scalar singlet: $\mathcal{W} = \mathcal{W}_{MSSM} + \lambda SH_uH_d + f(S)$

Extra tree-level contribution • to the Higgs mass

$$M_{hh}^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta^2$$

loop correction
from top-stop

Alleviates fine-tuning in v ۲ for $\lambda > 1$ and moderate tan β

Mixing with doublet, singlet decoupled: Higgs couplings will cover most of the parameter space

Coupling to fermions: $H \to t\bar{t}, bb, \tau\bar{\tau}$

Less minimal SUSY

Add a scalar singlet: $\mathcal{W} = \mathcal{W}_{MSSM} + \lambda SH_uH_d + f(S)$

doublet decoupled Extra tree-level contribution • 500 to the Higgs mass 0.01 450 0.02 $M_{hh}^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta^2$ HĽ+LHC 400 loop correction 0.05 m_{h_2} [GeV] 350 to Higgs mass from top-stop 300 () Alleviates fine-tuning in v ٠ 250 for $\lambda > 1$ and moderate tan β 0.2 200 Mixing with singlet: 150 Higgs couplings less effective 3 5 2 4 $\tan \beta$

Two complementary ways to look for the extra Higgs:

Direct reach of LHC vs Higgs measurements?

At the risk of being trivial... Take just the SM + scalar singlet

- Realised in the NMSSM
- Low energy effective theory of Twin Higgs models
- Paradigm for 1st order ElectroWeak phase transition
- ► "Higgs portal", DM, ...

- can be singly produced
- decays to SM particles
- modified Higgs couplings
- ✓ easy enough to test capabilities of LHC and future colliders with just a few meaningful parameters

Higgs-singlet mixing: main features

$$\begin{split} \mathsf{SM}+1 \text{ real singlet:} \qquad & H=(i\pi^+,\frac{v+h^0+\pi^0}{\sqrt{2}}), \qquad S=v_s+s^0. \\ \mathsf{Mass eigenstates:} \quad & h=h^0\cos\gamma+s^0\sin\gamma, \ \phi=s^0\cos\gamma-h^0\sin\gamma. \end{split}$$

The phenomenology mainly depends on only 3 parameters:

$$\mu_{h} = c_{\gamma}^{2} \times \mu_{\rm SM},$$

$$\mu_{\phi \to VV,ff} = s_{\gamma}^{2} \times \mu_{\rm SM}(m_{\phi}) \times (1 - BR_{\phi \to hh}),$$

$$\mu_{\phi \to hh} = s_{\gamma}^{2} \times \sigma_{\rm SM}(m_{\phi}) \times BR_{\phi \to hh},$$

 ϕ is like a heavy SM Higgs, with narrow width $+\ hh$ channel

$$\sin^2 \gamma = rac{M_{hh}^2 - m_h^2}{m_{\phi}^2 - m_h^2}, \qquad M_{hh}^2 \propto v^2 \text{ depends only on EW physics}$$

Decays of ϕ

At high mass the equivalence theorem relates the decay widths

$$BR_{\phi \to hh} = BR_{\phi \to ZZ} = \frac{1}{2}BR_{\phi \to WW} \simeq \frac{1}{4}, \qquad m_{\phi} \gg m_h$$

(these are the dominant channels, fermionic modes suppressed) • Phenomenology roughly determined just by m_{ϕ} and M_{hh} !

 ϕ is like a heavy SM Higgs + BR $_{\phi \rightarrow hh}$

Direct searches

- Searches in diboson final states (WW, ZZ, hh) at ATLAS and CMS, in many different channels
- Already more sensitive than Higgs couplings at low masses!

Projections for the future

How to get fast estimates of the reach of future machines?

Rescale 8 TeV LHC data with the parton luminosity of the bkg

see also Salam, Weiler '14; Thamm, Torre, Wulzer '15

The limit on the cross-section is mainly determined by the number of background events around the resonance peak

These results are valid for any scalar resonance decaying to VV, hh

Direct vs indirect

• Easy to compare the limits with indirect bounds from Higgs couplings

direct searches dominate at low mass (at each stage of the experimental program)

Generic singlet: direct searches @ LHC

Considering both $\phi \to VV$ and $\phi \to hh$ the combined reach does not strongly depend on $BR_{\phi \to hh}$

Double Higgs production

 The triple interactions *\phih* and *hhh* are sensitive to the parameters of the scalar potential

$$BR_{\phi \to hh} \simeq \frac{1}{4} - \frac{3}{4} \frac{v}{v_s} \sin \gamma + \mathcal{O}(m_h^2 / m_{\phi}^2)$$
$$g_{hhh} \simeq g_{hhh}^{SM} \left(1 + \frac{2}{3} \frac{v}{v_s} \sin \gamma \right) + \mathcal{O}(m_h^2 / m_{\phi}^2)$$

both quantities mainly depend on v_s only (not on the quartic couplings)

Very large modifications of triple Higgs coupling are possible: in principle observable even at LHC!

SUSY: the NMSSM

 λSH_uH_d

◊ Extra tree-level contribution to the Higgs mass

$$M_{hh}^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta^2$$

easy to recast the previous bounds

Already now, searches for
 φ -> ZZ comparable with reach
 of HL-LHC in Higgs couplings

Weakly coupled model, low masses:
 Direct searches always dominate

Twin/Composite Higgs

- Linear sigma-model $V = \lambda_* (\Phi^2 f^2)^2 + m^2 |H|^2 + \kappa |H|^4$, $\Phi = (H, S)$.
- If not too strongly coupled, light singlet in the spectrum $m_\sigma pprox \lambda_* f$
- Describes a generic pNGB Higgs, symmetry breaking at the scale *f*

$$\sin^2 \gamma \sim v^2/f^2$$

 <u>Twin Higgs:</u> natural without light colored states...
 effects only through Higgs portal

If not too heavy (i.e. not too strongly coupled) the singlet can be directly visible

Conclusions & outlook

Higgs couplings (moderate improvement at LHC)

Resonance searches (very powerful at 'low' masses) combine to fully probe NP models

Scalar singlets: simple but interesting example

NMSSM

Twin Higgs

Composite Higgs

Higgs portal

EW baryogenesis

Backup

Generic singlet: comparison of bounds

Direct searches dominate for low m_{ϕ} , M_{hh} : look for the singlet!

Higgs couplings

Very large modifications of the triple Higgs coupling are possible: in principle observable at the LHC

Higgs couplings

LHC will be able to measure Higgs couplings with a precision of a few %

	Uncertainty (%)			
Coupling	$300 {\rm ~fb^{-1}}$		$3000 {\rm ~fb^{-1}}$	
	Scenario 1	Scenario 2	Scenario 1	Scenario 2
κ_γ	6.5	5.1	5.4	1.5
κ_V	5.7	2.7	4.5	1.0
κ_g	11	5.7	7.5	2.7
κ_b	15	6.9	11	2.7
κ_t	14	8.7	8.0	3.9
$\kappa_{ au}$	8.5	5.1	5.4	2.0

CMS-NOTE-2012-006

Extended Higgs sectors: take a simple scenario w/ large effects due to tree-level mixing with new states

How do direct searches compare with these results?

Extrapolation of bounds

$$N_B(m_0, s_0, L_0) = N_B(m, s, L')$$
 implies

$$\sum_{\{i,j\}} c_{ij} \frac{\mathrm{d}\mathcal{L}_{ij}}{\mathrm{d}\hat{s}} (s, m^2) = \frac{L_0}{L'} \sum_{\{i,j\}} c_{ij} \frac{\mathrm{d}\mathcal{L}_{ij}}{\mathrm{d}\hat{s}} (s_0, m_0^2),$$

which implicitly determines $m(m_0, L')$, for any L'.

For each m, $L_0 \leq L' \leq L$ is chosen as to maximise the exclusion

$$[\sigma \times BR](m; s, L) = \min_{L' \le L} \left[\frac{L_0}{\sqrt{LL'}} [\sigma \times BR]_0(m_0; s_0, L_0) \Big|_{m_0(L')} \right]$$

(we use a $\sqrt{L'/L}$ rescaling from L' to the nominal L).

Extrapolation of the limits

Estimate the bounds as follows: significance = $\frac{S}{\sqrt{S + B + \alpha_{sys}^2 B^2}} \lesssim 2$

$$S_{95\%} \approx 2\sqrt{B + \alpha_{\rm sys}^2 B^2}$$

limit on the cross-section is determined by the number of background events around the resonance peak

Rescale LHC data with the parton luminosity of the bkg see also Salam, Weiler '14; Thamm, Torre, Wulzer '15

$$\begin{cases} N_B(s_0, L_0, m_0) = N_B(s, L, m) & \to & m = m(m_0) \\ N_S(s_0, L_0, m_0) = N_S(s, L, m) & \to & \sigma(m) = (L_0/L) \, \sigma_0(m_0) \end{cases}$$

Reach of LHC and future upgrades

Pooch of LHC and future upgrades

 m_{ϕ} [GeV]

become important: we don't extrapolate the limits beyond that point)