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Little bangs in the laboratory
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by microscopic
properties in LQCD
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Thermodynamics of QCD

from lattice gauge theory

and thus the values of the temperature T used in the fits.
Based on the uncertainty analyses in the determination of
the lattice scale a (∼1.3%) and tuning of the ms to stay on
the LCP presented in Appendixes B and C, we assigned an
overall conservative 2% uncertainty in T, which we add
linearly to the error estimates already assigned by the
bootstrap process. In practice, at each T and for each
observable, we picked the minimum and maximum values
of the 1σ bootstrap envelope in the region T ! 2%. This
new envelope is then used as the final uncertainty band for
all the continuum results shown in the figures and
discussed below.
Our continuum extrapolated results for the trace anomaly

and other thermodynamic observables are shown in Fig. 5
and the data are given in Table I. For T < 150 MeV, the
trace anomaly is well approximated by the HRG estimate
shown by the solid line in Fig. 5 (left). For T > 150 MeV,
the Nτ ≥ 8lattice results are systematically higher than the
HRG estimate as shown in Fig. 3, and the slopes of the
HRG and continuum extrapolated curves start to differ as
shown in Fig. 5. In the peak region, ðϵ − 3pÞ=T4 has a
maximum of about 4.05(15) at T ∼ 204 MeV. This maxi-
mal value from simulations with the HISQ/tree action is
significantly smaller than our previous results with the p4
and asqtad actions which were incorporated in the HotQCD
parametrization [23] of the EoS, as well as in the s95p
parametrization of the EoS that is frequently used in
hydrodynamic models [45].
The final continuum extrapolated estimates of the

pressure, energy density and entropy density are shown
in Fig. 5 (right) and compared with HRG predictions for
T < 170 MeV. Again, there is reasonable agreement for
T < 150 MeV. Above T ¼ 150 MeV, HRG estimates
lie along the lower edge of the error-band of the lattice
estimates.

We can now compare our results with the results
obtained by the Wuppertal-Budapest Collaboration using
the stout action [26]. This comparison is shown in Fig. 6 for
the trace anomaly, the pressure and the entropy density. We
find good agreement in the trace anomaly with the stout
results over the full temperature range (130–400) MeV.
Note, however, that above the peak the central values
with the stout action lie systematically below ours. As a
result, our estimates of the pressure become systematically
larger for T > 200 MeV. By T ¼ 400 MeV, the difference
between the central values in the two calculations increases
to about 6%. The two results, however, still agree within
errors. The difference in the entropy density reaches about
7% by T ¼ 400 MeV, and in this case the two estimates
differ by about 2σ. These differences suggest that more
detailed calculations of the trace anomaly at higher temper-
atures are needed. In particular, it would be important to see
if the differences persist at higher temperatures where a
comparison with resummed perturbative calculations
should be possible (see Sec. V C).

A. Parametrization of the EoS

We close this section by providing an analytical para-
metrization of the pressure of (2 þ 1)-flavor QCD, sum-
marized in Table I, that can be used in phenomenological
applications and hydrodynamic modeling of strong inter-
action matter. We choose an ansatz that incorporates basic
features of the low and high temperature limits, i.e., it
ensures that the pressure becomes exponentially small at
low temperatures and approaches the ideal gas limit at high
temperatures. We find that the following parametrization
provides an excellent description of all bulk thermody-
namic observables discussed in the previous sections,
including the specific heat and speed of sound that require

FIG. 5 (color online). Spline fits to the trace anomaly for several values of the lattice spacing aT ¼ 1=Nτ and the result of our
continuum extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right-hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale error is
included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95π2=60 in the right panel
corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region, Tc ¼ ð154! 9Þ MeV.

A. BAZAVOV et al. PHYSICAL REVIEW D 90, 094503 (2014)

094503-8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 200  400  600  800  1000 1200 1400 1600 1800 2000

(ρ
-3

p
)/

T
4

T [MeV]

O(g6) Nf=3+1 qc=-3000
O(g6) Nf=3+1+1 qc=-3000

2+1+1 flavor EoS from lattice

 0

 1

 2

 3

 4

 5

 6

 7

 200  400  600  800  1000 1200 1400 1600 1800 2000

p
/T

4

T [MeV]

O(g6) Nf=3+1 qc=-3000
O(g6) Nf=3+1+1 qc=-3000

2+1+1 flavor EoS from lattice

Figure S7: The lattice result for the 2+1+1 flavor QCD pressure together with the fitted value of the
g6 order. We included the charm mass at tree-level. The perturbative result agrees with the data from
about 500 MeV temperature. Using the same fitted coe�cient we also calculated the e↵ect of the bottom
quark with the same method. The blue curve shows the EoS including the bottom contribution.

S4.1 The 2+1+1 flavor QCD equation of state

Now we show the complete result obtained from nf = 2 + 1 + 1 lattice QCD. Figure S8 depicts the trace
anomaly (left panel) and pressure (right panel). For comparison the 2+1 flavor results are also shown.

Plotting p/T 4 (which is the normalized free energy density), we can compare our result to other
approaches. At low temperatures the Hadron Resonance Gas model (using the 2014 PDG spectrum) gives
a good description of the lattice data. This was already observed in Ref. [S18].

In Ref. [S18] we gave a simple parametrization for the 2+1 flavor equation of state. Here we update
the 2+1 flavor parameters and provide a parametrization that covers the 100-1000 MeV temperature
range and describes the 2+1+1 lattice data, i.e. including the e↵ect of the charm quark. As before, the
parametrizing formula reads

I(T )

T 4
= exp(�h1/t � h2/t

2) ·
✓

h0 + f0
tanh(f1 · t + f2) + 1

1 + g1 · t + g2 · t2

◆
, (S11)

with t = T/200 MeV. The parameters are given in Table. S1, the resulting curves are shown in Fig. S8.
For completeness the nf = 2 + 1 parametrization is also shown.
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Figure S8: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories in our parametriza-
tion Eq. (S11). We also show the Hadron Resonance Gas model’s prediction for comparison.
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[Bazavov et al. (HotQCD) (2014)] [Borsányi et al. (2016)]

thermodynamic equation of state p(T ) rather well understood now

also µ 6= 0 is being explored

progress in computing power
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Transport coefficients

from perturbation theory / effective kinetic theory at leading order
[Arnold, Moore, Yaffe (2003)]

η(T ) = k
T 3

g4 log(1/g)
,

next-to-leading order also understood now
[Ghiglieri, Moore, Teaney (2015-2018)]

form AdS/CFT correspondence (very strong coupling)
[Kovtun, Son, Starinets (2003)]

η

s
≥ ~

4π

more transport properties and intermediate coupling regime to be
understood
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Fluid dynamics in heavy ion collisions
[ALICE, 1805.04390 (2018)]

Anisotropic flow of identified particles ALICE Collaboration

)c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 0-1%

)c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 10-20% )c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 0-5%

)c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 20-30% )c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 5-10%

)c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 30-40%  

 

±π
±K
pp+

 = 5.02 TeVNNsPb −ALICE Pb
| < 0.5y|

)c (GeV/qn/T
p 

0 0.5 1 1.5 2 2.5 3

 qn/
|>

2}
η

Δ
{2

, |
4v 

0

0.02

0.04

0.06 40-50%

Fig. 11: (Colour online) The pT/nq dependence of v4/nq of p±, K±, and p+p for various centrality classes.
Statistical and systematic uncertainties are shown as bars and boxes, respectively.
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Fig. 12: (Colour online) The pT-differential v2 (top), v3 (middle), and v4 (bottom) of p± for the 0–5%, 10–20%,
and 40–50% centrality classes compared to hydrodynamical calculations from MUSIC model using IP-Glasma
initial conditions (magenta) [81] and the iEBE-VISHNU hybrid model using AMPT (orange) or TRENTo (cyan)
initial conditions [82]. Statistical and systematic uncertainties of the data points are shown as bars and boxes,
respectively. The uncertainties of the hydrodynamical calculations are depicted by the thickness of the curves. The
ratios of the measured vn to a fit to the hydrodynamical calculations are also presented for clarity.
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vn(pT ) for pions in PbPb collisions well described by fluid dynamics

initial conditions matter
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Fluid dynamics for smaller systems 1
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flow coefficients from higher order cumulants v2{n} agree:
→ collective behavior

elliptic flow signals also in pPb and pp!

can fluid approximation work for pp collisions?
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Fluid dynamics for smaller systems 2

[B. Schenke, Quark Matter 2018]

Anisotropy vs. multiplicity

!17 B j ö r n  S c h e n k e ,  B N L

B. Schenke, C. Shen, P. Tribedy, in preparation

Experimental data: J. Adam et al. (ALICE), Phys. Rev. Lett. 116, 132302 (2016) 
B. B. Abelev et al. (ALICE), Phys. Rev. C90, 054901 (2014), ALICE Collaboration, arXiv:1805.01832 
ATLAS Collaboration, Eur. Phys. J. C (2017) 77:428 rather good agreement between data and theory for large multiplicity

fluid approximation + initial state model works best for PbPb but still
reasonable for pPb and pp
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Questions and puzzles

how universal are collective flow and fluid dynamics?
or: when does it break down and how?

what determines density distribution in a proton?

role of multi-parton interactions

more elementary systems such as ep or e+e− [News at Quark Matter 2018!]

PbPbPb p p p p e- e+ e-
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Idea behind relativistic fluid dynamics

General principle: macroscopic physics governed by conservation laws

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

thermal equilibrium = ideal fluid approximation

πbulk = πµν = νµ = 0.
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Conservation laws

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0

equation for fluid velocity uµ

(ε+ p+ πbulk)uµ∇µuν + ∆νµ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0

equation for particle number density n

uµ∂µn+ n∇µuµ +∇µνµ = 0

Relativistic dynamics

covariance

causality
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Standard derivative or Chapman-Enskog expansion

take fluid velocity uµ and thermodynamic fields T, µ as degrees of freedom

express “viscous stresses” in terms of derivatives

bulk viscous pressure

πbulk = −ζ ∇µuµ + . . .

shear stress

πµν = −η
[
∆µα∇αuν + ∆να∇αuµ −

2

3
∆µν∇αuα

]
+ . . .

diffusion current

να = −κ
[
nT

ε+ p

]2
∆αβ∂β

( µ
T

)
+ . . .

restricted to small gradients (large systems)

does not lead to relativistically causal evolution equations
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Israel-Stewart type theories

Evolution equations instead of constraints

equation for shear stress πµν

τshear P
ρσ
αβ u

µ∇µπαβ + πρσ + 2η P ρσαβ ∇αu
β + . . . = 0

with shear viscosity η(T, µ)

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + πbulk + ζ ∇µuµ + . . . = 0

with bulk viscosity ζ(T, µ)

equation for baryon diffusion current νµ

τheat ∆α
β u

µ∇µνβ + να + κ

[
nT

ε+ p

]2
∆αβ∂β

( µ
T

)
+ . . . = 0

with heat conductivity κ(T, µ)
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Transverse expansion

for central collisions ε = ε(τ, r)

initial pressure gradient leads to radial flow

fluid evolution equations for Israel-Stewart type theories

Aij(Φ, τ, r)
∂

∂τ
Φj +Bij(Φ, τ, r)

∂

∂r
Φj + Ci(Φ, τ, r) = 0.

mathematically set of quasi-linear, first order partial differential equations
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Characteristic velocities
[Floerchinger, Grossi (2017)]

characteristic velocities λ(n) follow from det
(
B − λ(n)A

)
= 0 as

λ(1) =
v + c̃

1 + c̃v
, λ(2) =

v − c̃
1− c̃v , λ(3) = λ(4) = λ(5) = v

equations hyperbolic if λ(n) ∈ R
causal signal propagation for c̃ ≤ 1

modified velocity of sound

c̃ =
√
c2s + d

ideal fluid velocity of sound

c2s =
∂p

∂ε

viscous correction

d =

4η
3τshear

+ ζ
τbulk

+ . . .

ε+ p+ πbulk − πφφ − π
η
η
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Domains of influence and dependence

[Floerchinger, Grossi (2017)]
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causality cones are space-, time- and state dependent !

causality poses a bound to applicability of relativistic fluid dynamics
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Causality as bound to fluid approximation
[Floerchinger, Grossi (2017)]

Navier-Stokes initial conditions at τinitial = 0.6 fm/c
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causality violations for too large gradients!
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The hydro “attractor”

ratio of longitudinal to transverse “pressure” in Israel-Stewart theory
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approach to attractor governed by τshear

causality: non-hydrodynamic modes needed!

also negative longitudinal “pressure” allowed by causailty constraint
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Mode-by-mode fluid dynamics

[Floerchinger, Wiedemann (2014), work in progress with E. Grossi, J. Lion]

evolution of background & perturbations

T+δT

T

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

r[fm]

T[GeV]

detailed understanding of perturbations
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Conclusions

high energy nuclear collisions produce a relativistic QCD fluid!

fluid dynamics seems surprisingly universal

experimental hints for collective flow also in pPb and pp collisions

improved understanding of relativistic fluid dynamics

causality: one must go beyond strict derivative expansion

non-hydrodynamic modes needed

bound on applicability posed by causality
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