

Sixth Annual Conference on Large Hadron Collider Physics Bologna (Italy) – 4 to 9 June 2018

New results on collectivit in small systems & with ALICE

Domenico Colella

Istituto Nazionale di Fisica Nulceare, Sezione di Bari on behalf of the ALICE Collaboration

Introduction

Heavy ion systems

- Studied to characterize the QGP properties
- Hot and dense matter created in heavy ion collisions largely proven to behave collectively

Small systems

- Smaller size colliding objects and average multiplicity in final state
- Traditionally
 - pp: benchmark for heavy-ion physics and microscopic production mechanism study
 - p-Pb: intermediate reference and initial state effects study environment
- Several "collective"-like phenomena are also observed in high multiplicity pp and p-Pb collisions

Introduction

In hydrodynamic description of heavy ion collisions fireball expected to expand through:

- <u>Isotropic radial flow</u> (important in central collisions)
 - Common expansion velocity of partons
 - Observables: spectra shape, baryon/meson anomaly
- Anisotropic transverse flow
 - Initial spatial anisotropy translates into final momentum anisotropy (in semi-peripheral collisions)
 - Fluctuations of initial spatial distribution translates into final momentum anisotropy (in central collisions)
 - Observables: multi-particle correlations

Origin of collectivity

- Initial state correlations : particles produced with momentum correlations at partonic level → survive through the fireball stages → converted into hadron final state momentum correlations
- Final state correlations : space anisotropies converted into momentum anisotropies via hydrodynamical flow → final state interactions generate the final state correlations

A Large Ion Collider Experiment

Multi-purpose detector at the LHC with unique particle identification capabilities and tracking down to very low momenta

LHCP '18 - Bologna (Italy) June 5, 2018

ALICE

A Large Ion Collider Experiment

Multi-purpose detector at the LHC with unique particle identification capabilities and tracking down to very low momenta

<u>Central Barrel Detectors ($|\eta| < 1$)</u>

Inner Tracking System (ITS)

- Tracking
- Vertexing
- Triggering
- Low momentum PID

Time-Projection Chamber (TPC)

- Tracking
- PID

Time-of-flight detector (TOF)

PID

High Momentum PID (HMPID)

PID

VO

- Triggering
- Event multiplicity determination

D. Colella (INFN, Bari)

Radial flow: hardening of $p_{\rm T}$ spectra

- Spectra became harder with increasing multiplicity
- Effect more pronounced for heavier particles

- Spectra became harder with increasing multiplicity
- Effect more pronounced for heavier particles

- Hardening of the spectra with incresing multiplicity
- Hardening more pronounced for heavier particles

 $\pi^{-}+\pi^{+}$

K+K

p_{_} (GeV/c)

3.5 p_ (GeV/c)

1.8

 p_{T} (GeV/c)

1.2

Radial flow: blast-wave fit

- Simultaneus fit of p_T spectra for many light flavor particles (π , K, p)
- Good description of in central Pb-Pb collisions
 → Strong radial flow with common velocity and freezeout temperature
- Caveat: limited fit ranges

Radial flow: blast-wave fit

ALI-PREL-145941

- In Pb-Pb collisions
 - Large $\langle \beta_T \rangle$ for central collisions
- Similar exercise done in pp and p-Pb collisions
 - **pp vs p-Pb**: (β_T) and T_{kin} compatible at mid-low multiplicity
 - **p-Pb vs Pb-Pb**: parameters show similar trend
 - → Consistent with presence of radial flow in p-Pb collisions

- In Pb-Pb collisions
 - Large $\langle \beta_T \rangle$ for central collisions
- Similar exercise done in pp and p-Pb collisions
 - **pp vs p-Pb**: $\langle \beta_T \rangle$ and T_{kin} compatible at mid-low multiplicity
 - p-Pb vs Pb-Pb: parameters show similar trend
 - → Consistent with presence of radial flow in p-Pb collisions
 - ightarrow At similar $\langle dN_{ch}/d\eta \rangle$
 - \circ T_{kin} is similar
 - \circ $\langle \beta_T \rangle$ is significantly higher for p-Pb collisions
- Trend observed in pp reproduced by Pythia8 with color reconnection

Radial flow: baryon/meson anomaly

- In central Pb–Pb collisions
 - ✓ p/π, Λ/K⁰_s enhancement at intermediate $ρ_{T}$

D. Colella (INFN, Bari)

Radial flow: baryon/meson anomaly

- In central Pb--Pb collisions
 - ✓ p/π, Λ/K⁰_S enhancement at intermediate $ρ_{T}$
 - Effect arising in the bulk and not from the jets

D. Colella (INFN, Bari)

- Radial flow: baryon/meson anomaly
 - In central Pb–Pb collisions
 - ✓ p/π, Λ/K⁰_S enhancement at intermediate p_{T}
 - Effect arising in the bulk and not from the jets
 - ✓ Models → Effect consistent with a flow boost pushing particles from low to high $p_{\rm T}$
 - **Hydro** describes only the rise < 2 GeV/*c*
 - **Recombination** reproduces the effect at intermediate $\rho_{\rm T}$ but overestimates towards lower $\rho_{\rm T}$
 - EPOS (with flow) gives good description of data

D. Colella (INFN, Bari)

Ph – Ph

Xe – Xe

- Radial flow: baryon/meson anomaly
 - In central Pb–Pb collisions
 - \checkmark p/π, Λ/K⁰_S enhancement at intermediate p_{T}
 - Effect arising in the bulk and not from the jets
 - ✓ Models → Effect consistent with a flow boost pushing particles from low to high $p_{\rm T}$
 - **Hydro** describes only the rise < 2 GeV/*c*
 - **Recombination** reproduces the effect at intermediate p_{T} but overestimates towards lower p_{T}
 - **EPOS** (with flow) gives good description of data
 - / p/ ϕ independent of $\rho_{\rm T} \rightarrow$ Similar mass drives similar spectral shape
 - Can be also explained by models with recombination (Phys.Rev. C 92 (2015) 054904)

D. Colella (INFN, Bari)

Xe – Xe

Radial flow: baryon/meson anomaly

- Across the three systems Λ/K^0_{S} evolves
 - \checkmark with multiplicity in qualitatively similar way: **depletion** at low $p_{\rm T}$, enhancement at intermediate $p_{\rm T}$

Radial flow: baryon/meson anomaly

- Across the three systems $\Lambda/{\rm K^0}_{\rm S}$ evolves
 - \checkmark with multiplicity in qualitatively similar way: depletion at low $ho_{
 m T}$, enhancement at intermediate $ho_{
 m T}$
 - rather smoothly for given p_T intervals

ightarrow Points toward one common driving mechanism in all system

Pb – Pb

- In Pb-Pb collisions
 - → Mass ordering (hydrodynamic flow, hadron re-scattering)
 - → Baryon/meson grouping (recombination/coalescence)

Initial geometry and event-by-event fluctuations cause azimuthal anisotropy with respect to common symmetry plane $d^{3}N = 1 = d^{2}N$

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}\left[1 + 2\sum_{n=1}^{\infty}v_{n}cos[n(\varphi - \Psi_{n})]\right]$$

ALICE

- In Pb-Pb collisions
 - → Mass ordering (hydrodynamic flow, hadron re-scattering)
 - → Baryon/meson grouping (recombination/coalescence)

- Non-flow subtracted v₂(p_T)
- Similar features as Pb-Pb measurements
 - → Clear mass ordering (low $p_{\rm T}$ region)
 - Qualitatively predicted by hydro
 - → Indication of baryon/meson grouping (intermediate $p_{\rm T}$)

ALICE

v_n{2}

- Heavy-ion collisions
 - Clear multipicity dependence (consequence of collision geometry)
 - Ordering $v_2 > v_3 > v_4$
- Small systems
 - Comparable values with Pb-Pb at low N_{ch}
 - Weak multiplicity dependence
 - Ordering $v_2 > v_3 > v_4$
 - ightarrow Cannot be explained solely by non-flow

Collectivity can be better probed with multi-particle cumulants

ALI-PREL-153079

Origin of collectivity in small collision systems

- 2-particle correlations: described by final state models
- Multi-particle correlations: not described quantitatively by any model so far
- \rightarrow v_n(m) measurements alone cannot distinguish between initial and final state approaches

Anisotropic flow: Symmetric Cumulants

- Constraining initial condition in small systems is crucial to improve the undestanding: Symmetric Cumulants
 - ightarrow sensitive to initial conditions
 - ightarrow clear suppression of non-flow effects
- Positive correlation between v₂ and v₄ in all collision systems
- Anti-correlation between v₂ and v₃ at large multiplicities (link to initial eccentricity correlations) → Transition to positive correlation in small and large systems
- Not described by non-flow only models, but qualitatively predicted by model with initial state correlations

SC(2,4)

- Many observables do show a smooth transaction from heavy-ion to small systems as a function of event particle multiplicity
- Clear evidence of collective behaviour observed in small systems
- At the moment, the origin of collectivity in small systems is not clear
 - Symmetric Cumulants provide tight constrains to theoretical calculations

Centrality/Multiplicity determination

The centrality/multiplicity classes requires the following steps:

- 1 the VO amplitude distribution is fitted with Glauber MC
- 2 absolute scale is defined, through the definition of anchor point, as the amplitude of the VO equivalent to 90% of hadronic cross-section
- 3 data are divided into several percentiles selecting on signal amplitude measured in the VO
- VO amplitude distribution
 - Pb—Pb and pp: sum of amplitudes in the two VO scintillators, VO-A&VO-C ("VOM")
 - **p-Pb:** amplitude by VO-A (placed on the outgoing Pb side)
- □ $(dN_{ch}/d\eta)$ is measured in $|\eta| < 0.5$ to avoid "auto-biases" in multiplicity determination

(dN _{ch} /dη)			
Centrality/Multiplicity class (Pb—Pb/p—Pb/pp)	Colliding system		
	Pb—Pb (√s _{NN} = 2.76 TeV)	p—Pb (√s _{NN} = 5.02 TeV)	pp (√s = 7 TeV)
0-5%/0-5%/0-0.95%	1601±60	45±1	21.3±0.6
70-80%/60-80%/48-68%	35±2	9.8±0.2	3.90±0.1 4

The VO detector is composed of a pair of forward scintillator hodoscopes placed at 2.8 < η < 5.1(VO-A) and -3.7 < η < -1.7 (VO-C)

D. Colella (INFN, Bari)

$p_{\rm T}$ spectra in pp collisions vs multiplicity

Blast-wave fit in pp collisions vs multiplicity

Charged particle production vs energy

In Pb-Pb at 5.02 TeV (dN_{ch}/dη) /($N_{\rm part}$) increases with \sqrt{s}

following a steeper power law than pp collisions

In **pp at 13 TeV** $\langle dN_{ch}/d\eta \rangle$ increases with \sqrt{s} following a power law, along the trend from lower center of mass energies \rightarrow About **20% increase** from 7 to 13 TeV

Baryon-to-meson ratio – Quantitative comparison

 $\Lambda / K_{\rm S}^0$

Λ/K^0_{s} ratio vs multiplicity

For a higher $\langle dN_{ch}/d\eta \rangle$, we see:

- Increase at mid- to high p_{T}
- Corresponding depletion at low p_{T} Qualitatively same behavior as Pb--Pb

Quantitative comparison

Fitting the ratio of the p_{T} integrated yields with a power law:

$$\Lambda/K_{S}^{0} = A \times \langle dN_{ch}/d\eta \rangle^{B}$$

Values for B parameter as a function of p_{T} compatible between Pb–Pb and p–Pb collisions

Mean $p_{\rm T}$ vs multiplity

- **pp**: high multiplicity through multiple parton interactions incoherent production \rightarrow same $< p_T >$ *Color reconnection*: strings from independent parton interactions do not independently produce hadrons, but fuse before hadronization \rightarrow fewer but more energetic hadrons
- **p-Pb**: features of both pp and Pb-Pb systems Less saturation than in Pb-Pb \rightarrow Higher < p_T >
- **Pb-Pb**: high mu;tiplicity from superimposition of parton interactions, collective flow \rightarrow moderate increase of $<\!\!\rho_{\rm T}\!\!>$

Anisotropic flow: subevent method

Non-flow: few particle corrections not associated to the common symmetry plane

Correlations between particles in jets, or from resonannce decays, etc.

Subevent method [J. Jia, M. Zhou, A. Trzupek, PRC 96 (2017) 034906]

- Enforces a space separation between particles that are being correlated
- Extended to multi-particle cumulants

Subevent method further suppresses nonflow in multi-particle cumulants in pp collisions

Non-flow can be largely suppressed also in p-Pb collisions

standard method

2-subevent method

$$\langle\langle 4 \rangle \rangle_{2-sub} = \langle \langle \cos n(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4) \rangle \rangle$$

Anisotropic flow: v_2 coefficients (2 particle correlation)

Initial geometry and event-by-event fluctuations cause azimuthal anisotropy with respect to common symmetry plane

 $E\frac{d^{3}N}{d^{3}n} = \frac{1}{2\pi} \frac{d^{2}N}{p_{\tau}dp_{\tau}d\nu} [1 + 2\sum_{n=1}^{\infty} v_{n} cos[n(\varphi - \Psi_{n})]]$

Anisotropic flow harmonic coefficient obtained from Fourier expansion of azimuthal particle distributions in the final state relative to the symmetry plane

D. Colella (INFN, Bari)

