New results on hard probes in heavy-ion collisions from CMS

Xiao Wang for the CMS Collaboration

LHCP, June 2018 Bologna, Italy

Outline

- Hard probes for studies of the Quark Gluon Plasma
- Energy Loss in hot QCD medium:
 - Nuclear modification factors for jets and hadrons
 - Suppression of Charm and Beauty
 - New studies of system size effects
- Melting Quarkonia
- Jet quenching and modification of jet properties in QGP
 - Medium effects on Jet Mass
 - Jet shapes and Fragmentation Functions
 - Energy redistribution in Photon-tagged jets
 - In-jet Flavor production in Heavy Ion collisions

Heavy Ion Collision

Characterizing Heavy Ion Collisions

- Energy densities and temperatures achieved in Heavy Ion collisions at RHIC and LHC exceed QCD predicted critical values for deconfinment
- Creation of strongly-interacting Quark Gluon Plasma (QGP) in such collisions is firmly established through multitude of experimental results
- Hard probes (high-scale processes: high momentum transfer, high p_T/E_T , high mass) are in-situ tomographic probes for QGP
- Provide experimental means to study: Medium properties and interaction strength Energy loss and redistribution Degree of thermalization

 N_{part} – #of participating nucleons: characterizes volume of the interaction region

 $N_{coll} - \#$ binary collisions: expected scale for hard processes

central

peripheral

Energy Loss in QGP

Nuclear modification factors are used to express the strength of nuclear effects:

- Partonic energy loss in QGP is evident in strong suppression of high p_T hadrons
- Colorless probes (isolated photons, Z^0 , W) confirm expected N_{coll} scaling
- Cold nuclear matter effects are constrained by pPb data

Flavor Dependence of Energy Loss

CMS-PAS-HIN-16-016

More on Beauty Suppression

- First direct reconstruction of B mesons observation in heavy ion collision
- Significant suppression of B^{\pm} yields in PbPb data compared to pp
- Hint of smaller B_s^{0} suppression could be related strangeness enhancement (a known QGP signature) and quark recombination mechanism of particle production

Melting Quarkonia

- Theory predicts sequential "melting" of Quarkonium species based on binding energy vs medium temperature
- Observed ordering of R_{AA} levels is generally consistent with this expectations
- Details of centrality dependence not straightforward to relate to expected temperature change

Energy Loss vs System Size

Xe 5.4 fm

Pb

6.6 fm

- Short LHC run with a smaller Xeon nuclei allowed to explore details of system size effects on energy loss
- Similar R_{AA} trends with p_T
- Maximum suppression levels follow same trend in $\langle N_{part} \rangle$

8

CMS-PAS-HIN-18-004

Energy Loss vs System Size

- Short LHC run with a smaller Xeon nuclei allowed to explore details of system size effects on energy loss
- Similar R_{AA} trends with p_T
- Maximum suppression levels follow same trend in $\langle N_{part} \rangle$

Xe ________

Pb

6.6 fm

Jet Quenching

- Energy loss in QGP could be assessed more closely with jet studies: jet energy has closer connection to initial parton
- Jet R_{AA} shows significant suppression over the entire p_T range assessed
- What happens to this "quenched" energy?

Modification of Jet Substructure

- Groomed jet mass explores earliest hard splitting of emerging parton shower
- For high- p_T jets the PbPb results are consistent with pp measurements
- For lower p_T jets enhanced fraction of high mass jets is observed in PbPb
- Theoretical calculations predict same qualitative trend but miss the details of p_T and mass dependence

arXiv:1805.05145

Modifications of Jet Shapes

- Radial distribution of transverse momenta is measured differentially in p_T
- Peripheral PbPb collisions: most similar to pp, small momentum excess in soft sector
- Central PbPb collisions: enhancement of large Δr contributions in soft sector, loss of momenta in hard constituents \rightarrow

Jet energy is redistributed towards softer fragments and large radii

UIC

Jet Shapes for γ +Jets

• γ +jet events provide an unbiased reference selection for PbPb and pp data

- γ +jet events are dominated by quark jets
- Comparative analysis with gluon-dominated inclusive jets will provide further constraints on q vs g energy loss

0.7

0.6

0.5

0.4

0.2

0.1

8 10

dg _____

Compton: $q \ g \rightarrow \gamma \ q$

100

Nucl.Phys. B860 (2012) 311

Fragmentation

30 40

quark

 E_T^{γ} (GeV)

Annihilation: $q \overline{q} \rightarrow \gamma g$ gluon

In-jet Flavor Production

- Radial distribution of D⁰ mesons wrt jet axes initiated the study of charm production in jets
- At high p_T radial D^0 distribution inside jet cone is consistent with vacuum reference
- At lower $p_T \rightarrow$ hint of "pushing out" towards larger r?

Summary

• Hard probes are versatile tools for studying properties of the QGP medium produced in Heavy Ion collisions

Charm vs. Beauty

- J/ ψ nuclear modification factors are measured separately for prompt (c \rightarrow J/ ψ) and non-prompt (b \rightarrow J/ ψ) components
- Suppression increases with centrality for both components, reaching higher levels for c- than b-related J/ψ
- Similar RAA trends for different collision energies: interplay of higher energy loss with changing spectral shape?

Modifications of Jet Fragmentation

 Radial distribution of correlated particle yields is measured

(jet con

• Peripheral PbPb collisions: most similar to pp, small excess of soft hadrons around the jet

differentially in p_T

 Central PbPb collisions: large excess of soft correlated yields + depletion of high p_T particles near jet access →

modifications of jet fragmentation pattern

UIC

Jet substructure

Soft drop algorithm

Yi Chen: QM2018

Jet substructure

Flat grooming

Large angle grooming

CMS-HIN-16-024

non-prompt D⁰ meson

B_s⁰ meson reconstruction

