New results on hard probes in heavy-ion collisions with LHCb

Frédéric FLEURET

Laboratoire Leprince-Ringuet, École polytechnique and Laboratoire de l'Accélérateur Linéaire, Orsay

On behalf of the LHCb collaboration

LHCP Bologna, 2018

08/06/2018

LH

Frédéric Fleuret - LLR/LAL - LHCb

The LHCb detector

Single arm spectrometer, the only LHC experiment fully instrumented in 2 < η < 5

Designed for heavy flavor physics

Excellent vertex, IP and decay time resolution $\sigma(IP) \approx 20 \ \mu m$

Very good momentum resolution

δp/p≈0.5–1% for 0<p<200 GeV/c

Particle identification

 $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV/c $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1-3\%$

LHCb can operate *p*-Pb and Pb-Pb collisions

The LHCb detector

- Can also operate in fixed-target mode: unique at LHC
 - Injecting gas in the LHCb VErtex LOcator (VELO) tank, primarly done to perform luminosity measurement.
 - Can be used as an internal gas target
 - Allows measurement of *p*-gas and ion-gas interactions

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

m I - Beam 2, Beam I - Gas, Beam 2 - Gas.

Noble gas only : (very low chemical reactivity)

He, Ne, Ar, Kr, Xe A = 4, 20, 40, 84, 131

Gas pressure: 10⁻⁷ to 10⁻⁶ mbar

LHCb operations for heavy ion physics

LHCb rapidity coverage in the centre-of-mass system

Outline of this talk

- 1. Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5 TeV
- 2. *p*-Pb collisions at $\sqrt{s_{NN}}$ = 5 TeV and $\sqrt{s_{NN}}$ = 8.16 TeV
- 3. *p*-Ar and *p*-He collisions at ~100 GeV scale

December 2015. First participation of LHCb in Pb-Pb data taking Only 24 colliding bunches. Very small luminosity ~ 10 μ b⁻¹ Minimum bias trigger configuration: all inelastic interactions recorded

1. Pb-Pb collisions @ $\sqrt{s_{NN}}$ = 5 TeV

Low Ecal Energy

High Ecal Energy

- central
- LHCb centrality reach
 - Detector limitation due to high occupancy in Pb-Pb collisions
 - No saturation of the calorimeter
 - But, saturation in the Vertex Locator (VELO)
- LHCb current limitations
 - Current tracking algorithm efficient up to 50% most central
 - Physics studies limited to 50% less central events

1. Pb-Pb collisions @ $\sqrt{s_{NN}}$ = 5 TeV

New results

• $J/\psi \rightarrow \mu^+ \mu^-$ in Ultra-Peripheral Collisions

One ion interacts with the electromagnetic field of the other : coherent J/ ψ photo-production Sensitive to nPDF, saturation, ...

$$\sigma^{coherent}_{J/\psi} = 5.27 \pm 0.21 \pm 0.49 \pm 0.68 \text{ mb}_{(stat.)}$$
 (syst.) (lumi.)

LHCb-CONF-2018-003 in preparation

LHCb will participate in the 2018 PbPb run (expect ×10 larger luminosity than 2015)

Nothing in the detector but two tracks

2. Proton-Pb/Pb-proton collisions

Event 351483885 Run 187340 Fri, 02 Dec 2016 20:56:29

Two data sets presented here:

- $\sqrt{s_{NN}}$ = 5 TeV proton-Pb interactions recorded in 2013: ~ 1.6 nb⁻¹
- $\sqrt{s_{NN}}$ = 8.16 TeV proton-Pb interactions recorded in 2016: ~ 30 nb⁻¹

2. $\sqrt{s_{NN}}$ = 5 TeV (2013) *p*Pb collisions

- Charm: Prompt J/ ψ , ψ (2S) and D⁰

- Baseline for nucleus-nucleus collisions
- Study of nuclear PDF (nPDF), coherent energy loss, gluon saturation (CGC), interaction with outcoming hadrons,...

- Forward rapidity region (y*>0) : *p*-Pb collisions
 - Significant J/ ψ , ψ (2S) and D⁰ suppression with respect to p-p yieds
 - J/ ψ and D⁰ compatible with nPDF, coherent energy loss mechanism (JHEP 03 (2013) 122) and CGC (PRD 91 (2015) 114005)
- Backward rapidity region (y^{*}<0) : Pb-*p* collisions
 - J/ψ and D⁰ modification compatible with theoretical expectations
 - Strong $\psi(2S)$ suppression w.r.t. J/ ψ , not compatible with nPDF and coherent energy loss. Could be due to the interaction of the lightly-bound $\psi(2S)$ with the outcoming partons/hadrons. (*Phys. Lett. B* 749(2015)98, *Nucl.Phys. A943* (2015), *Phys. Rev. C97*, 014909 (2018))

2. $\sqrt{s_{NN}}$ = 5 TeV (2013) *p*Pb collisions

• Beauty: Y(1S), non-prompt J/ ψ and ψ (2S)

- Baseline for nucleus-nucleus collisions
- Study of nuclear PDF (nPDF), coherent energy loss, gluon saturation (CGC), interaction with outcoming hadrons,...

- Forward rapidity region (y*>0) : *p*-Pb collisions
 - Little non-prompt J/ ψ (J/ ψ from b-hadrons) and Y suppression
 - compatible with nPDF and coherent energy loss mechanism
- Backward region (y^{*}<0) : Pb-p collisions
 - No significant non-prompt J/ψ (from b) and Y modification, compatible with expectations
 - Large stat. uncertainty for non-prompt ψ (2S) suppression, see 2016 data.

2. $\sqrt{s_{NN}}$ = 8.16 TeV (2016) *p*Pb collisions

Prompt and non-prompt J/ψ

- Baseline for nucleus-nucleus collisions
- Study of nuclear PDF (nPDF), coherent energy loss, gluon saturation (CGC), interaction with $\overset{0.2}{K}^{\rm DBb}_{p}$ outcoming hadrons,... FONLL with EPS09NLO

2. $\sqrt{s_{NN}}$ = 5 TeV *p*Pb collisions

New results

• Charm baryon: prompt Λ_c production

• Data are consistent with nPDF predictions

- Baryon/meson: prompt Λ_c / prompt D⁰
 - Most of the nPDF uncertainties cancel out
 - $\Lambda_{\rm C}/{\rm D}^0$ ratio sensitive to quark fragmentation
 - Model based on measured *pp* cross sections
- Forward rapidity region (y*>0) : p-Pb
 - Some discrepancies observed at high p_T
- Backward rapidity region (y*<0): Pb-p
 - Compatible with expectations
- To be improved with larger 2016 data set

Model from Lansberg, Shao EPJ C77 (2015) 1

LHCp Bologna - 2018

3. Fixed-target collisions

Two data sets presented here:

- $\sqrt{s_{NN}}$ = 110 GeV proton-Ar interactions 2015: ~ 4×10²² Protons On Target (17h)
- $\sqrt{s_{NN}}$ = 86.6 GeV proton-He interactions 2016: ~ 4×10²² POTs (87h)

$$\mathcal{L}_{pHe} = 7.6 \pm 0.5 \text{ nb}^{-1}$$

- pA collisions
 - Serve as a baseline for nucleus-nucleus collisions
 - Study of nuclear PDF (nPDF), nuclear absorption, ...
- With LHCb-SMOG, large rapidity coverage (~3 rapidity units) at large Bjorken-x in the target (x₂)
 - Give access to **nPDF anti-shadowing** region and **intrinsic charm** content in the nucleon

3. Charm in fixed-target proton-nucleus collisions

New results

• $J/\psi \rightarrow \mu^+\mu^-$ and $D^0 \rightarrow K^{\mp}\pi^{\pm}$ inclusive cross sections in *p*He @86.6 GeV

3. Charm in Fixed-target proton-nucleus collisions

New results

- J/ψ Differential yields (pAr@110 GeV) and cross sections (pHe@86.6 GeV)
 - Plain and dashed red lines, phenomenological parametrization: JHEP 05 (2013) 155
 - HELAC-ONIA predictions for pp (blue lines) and pA (yellow boxes): EPJC(2017) 77:1

- HELAC-ONIA under-estimate J/ ψ cross section (pHe) by a factor 1.78
- Good shape agreement with phenomenological predictions

3. Charm in Fixed-target proton-nucleus collisions

New results

- D⁰ Differential yields (pAr@110 GeV) and cross sections (pHe@86.6 GeV)
 - HELAC-ONIA predictions for pp (blue lines) and pA (yellow boxes): EPJC(2017) 77:1

- HELAC-ONIA under-estimate D0 cross section (pHe) by a factor 1.44
- Good agreement in rapidity shapes between data and predictions

3. Charm in Fixed-target proton-nucleus collisions

New results

D⁰ cross sections (pHe@86.6 GeV) .vs. Intrinsic charm

LHCb-PAPER-2018-021 in preparation

HELAC-ONIA predictions for pp (blue lines) and pA (yellow boxes): EPJC(2017) 77:1

- HELAC-ONIA does not contain intrinsic charm contribution
- No evidence of strong intrinsic charm contribution

Conclusions

The LHCb detector

- has unique capabilities for heavy flavor measurements at LHC
- Currently limited to peripheral collisions in Pb-Pb, but **full performances in** *p***-Pb collisions**
- Can operate a fixed-target program, unique at LHC

Current results

- Demonstrate capabilities to run in Pb-Pb collisions
- Performed prompt J/ ψ , ψ (2S), D⁰ and non-prompt J/ ψ and Y measurements in $\sqrt{s_{NN}}$ = 5 TeV *p*-Pb collisions
 - J/ψ , D^0 and Y measurements compatible with theoretical expectations
 - Strong backward-rapidity ψ (2S) suppression, maybe due to interactions with outcoming partons/hadrons.
- Performed prompt and non-prompt J/ ψ measurements in $\sqrt{s_{NN}}$ = 8.16 TeV *p*-Pb collisions
 - Compatible with lower energy data and theoretical expectations
- Performed prompt Λ_c measurements in $\sqrt{s_{NN}} = 5$ TeV p-Pb collisions
 - Λ_c / D^0 ratio shows possible discrepancy with models at forward rapidity and high p_T
- Performed J/ ψ and D⁰ measurements in $\sqrt{s_{NN}}$ = 110 GeV *p*-Ar and $\sqrt{s_{NN}}$ = 86.6 GeV *p*-He collisions
 - No evidence of strong intrinsic charm contribution

Conclusions

Still to come

- $\psi(2S)$ in *p*-Pb at $\sqrt{s_{NN}} = 8$ TeV
- Y(1S), Y(2S), Y(3S) in *p*-Pb at $\sqrt{s_{NN}}$ = 8 TeV
- D⁰, D[±], Λ_c^+ in *p*-Pb at $\sqrt{s_{NN}}$ = 8 TeV
- B⁰, B[±], $\Lambda_{\rm b}$ in *p*-Pb at $\sqrt{s_{NN}}$ = 8 TeV
- LHCb will participate to the 2018 Pb run:
 - x10 lumi. in 5 TeV PbPb collisions
 - PbNe @ 69 GeV fixed-target

We have only scratched the surface of LHCb capabilities in Ion collisions