Compressed SUSY searches in ATLAS
LHCP 2018 - Bologna

Joana Machado Miguéns
University of Pennsylvania

on behalf of the ATLAS Collaboration

June 7th 2018
Why compressed

just a few examples...

naturalness in MSSM (tree level)

\[- \frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2\]

\(\mu\) controls Higgsino masses

two-loop correction to \(m_H\) from gluinos

one-loop correction to \(m_H\) from stops

natural SUSY should be light
decoupled SUSY can be heavy

Natural SUSY mass spectrum

Why compressed
just a few examples...

naturalness in MSSM (tree level)

\[- \frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2\]

\[\mu\] controls Higgsino masses

two-loop correction to \(m_H \) from gluinos

one-loop correction to \(m_H \) from stops

\[- \frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2 \]

natural SUSY mass spectrum

\[\tilde{B}, \tilde{W} \]

\[\tilde{g} \]

\[\tilde{t}_L, \tilde{t}_R \]

\[\tilde{b}_L \]

\[\tilde{b}_R \]

natural SUSY should be light
decoupled SUSY can be heavy

higgsino LSPs motivated by naturalness & naturally compressed
Why compressed

just a few examples...

naturalness in MSSM (tree level)

\[-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2 \]

two-loop correction to \(m_H \) from gluinos

one-loop correction to \(m_H \) from stops

\(\mu \) controls Higgsino masses

\[\text{ATLAS} \]

Samples from the initial likelihood scan
Excl. by Run-1 2\ell + 3\ell + 4\ell
EWK model

natural SUSY
should be light

decoupled SUSY
can be heavy

higgsino LSPs motivated by
naturalness & naturally
compressed

Joana Machado Miguëns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
Why compressed

just a few examples...

naturalness in MSSM (tree level)

\[- \frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2\]

two-loop correction to m_H from gluinos

one-loop correction to m_H from stops

μ controls Higgsino masses

natural SUSY mass spectrum

\[
\tilde{B} \quad \tilde{W} \\
\tilde{L}_i, \tilde{e}_i \\
\tilde{Q}_{1,2}, \tilde{u}_{1,2}, \tilde{d}_{1,2} \\
\tilde{b}_R
\]

decoupled SUSY

yellow means not excluded

clear gap in sensitivity for

compressed SUSY models

higgsino LSPs motivated by

naturalness & naturally compressed

arXiv:1608.00872 [hep-ex]

ATLAS

Samples from the initial likelihood scan

Excl. by Run-1 $2\ell + 3\ell + 4\ell$

EWKH model

Joana Machado Miguëns (UPenn)

Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna
Why compressed

and from S. Heinemeyer talk yesterday

Where we will find SUSY

If SUSY exists: it should explain \((g - 2)\mu\)!

\[\Rightarrow \text{there should be (relatively) light EW SUSY particles!} \]

1.) pMSSM11 fit to all existing data

\[\Rightarrow \text{predictions of fit to all data: light EW particles} \]

\[\Rightarrow \text{mass hierarchy: } M_1 \sim M_2 < \mu \]

\[\Rightarrow \text{problem for the LHC: compressed spectra} \]

2.) “natural SUSY” with low fine-tuning

\[\Rightarrow \text{prediction: light EW particles (possible)} \]

\[\Rightarrow \text{mass hierarchy: } \mu < M_1, M_2 \]

\[\Rightarrow \text{problem for the LHC: compressed spectra} \]
Why compressed
and from S. Heinemeyer talk yesterday

Where we will find SUSY

If SUSY exists: it should explain \((g - 2)_\mu\)!
⇒ there should be (relatively) light EW SUSY particles!

1.) \textbf{pMSSM11 fit} to all existing data

⇒ predictions of fit to all data: \textit{light EW particles}
⇒ mass hierarchy: \(M_1 \sim M_2 < \mu\)
⇒ problem for the LHC: \textit{compressed spectra}

2.) “natural SUSY” with low fine-tuning

⇒ prediction: \textit{light EW particles} (possible)
⇒ mass hierarchy: \(\mu < M_1, M_2\)
⇒ problem for the LHC: \textit{compressed spectra}
Why compressed

and from S. Heinemeyer talk yesterday

Where we will find SUSY

If SUSY exists: it should explain \((g - 2)\mu\)!

⇒ there should be (relatively) light EW SUSY particles!

1.) pMSSM11 fit to all existing data

⇒ predictions of fit to all data: light EW particles
⇒ mass hierarchy: \(M_1 \sim M_2 < \mu\)
⇒ problem for the LHC: compressed spectra

2.) “natural SUSY” with low fine-tuning

⇒ prediction: light EW particles (possible)
⇒ mass hierarchy: \(\mu < M_1, M_2\)
⇒ problem for the LHC: compressed spectra
Compressed searches

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production
Compressed searches

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

2 soft leptons ($e^+e^-/\mu^+\mu^-$)

compressed EWKinos

\[
p \rightarrow \tilde{\chi}_1^\pm W^* \tilde{\chi}_2^0 Z^* \rightarrow j q \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow j q \tilde{\chi}_1^0 \tilde{\chi}_1^0
\]

compressed sleptons

\[
p \rightarrow \tilde{\ell} \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \tilde{\ell} \tilde{\chi}_1^0 \tilde{\chi}_1^0
\]
Compressed searches

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

2 soft leptons (e⁺e⁻/μ⁺μ⁻)

- Compressed EWKinos
- Compressed sleptons
- Disappearing track

Long-lived EWKinos

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production
Compressed searches

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

2 soft leptons (e⁺e⁻/μ⁺μ⁻)

compressed EWKinos

compressed sleptons

disappearing track

long-lived EWKinos

exploit distinct features from decay products
Compressed searches

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

2 soft leptons $(e^+e^-/\mu^+\mu^-)$

compressed EWKinos

- $W^* \rightarrow p \tilde{\chi}_1^0 \tilde{\chi}_2^- Z^* \rightarrow j q \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- $\tilde{\chi}_1^\pm$ small Δm

compressed sleptons

- $p \tilde{\ell} \tilde{\ell}$ soft lepton mass edges and **disappearing tracks**

disappearing track

long-lived EWKinos

- $p \tilde{\chi}_1^0 j \tilde{\chi}_1^0 \tilde{\chi}_1^\pm$ small Δm
- disappearing π^\pm

exploit distinct features from decay products

soft lepton mass edges and **disappearing tracks**
Compressed searches

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

2 soft leptons ($e^+e^-/\mu^+\mu^-$)

disappearing track

compressed EWKinos

compressed sleptons

long-lived EWKinos

exploit **distinct features from decay products**

soft lepton mass edges and **disappearing tracks**

ISR jet selection enhances MET from soft LSPs
ATLAS: A Toroidal LHC ApparatuS

major upgrades for Run 2 detectors (e.g. IBL), trigger, DAQ, reconstruction

excellent performance under challenging LHC conditions
peak lumi 2.14×10^{34} cm$^{-2}$ s$^{-1}$
over 64 interactions per crossing

analyses use 36 fb$^{-1}$ of 13 TeV pp LHC data collected by ATLAS

2015 + 2016
2 soft leptons ($e^+e^-/\mu^+\mu^-$)

compressed EWKinos

compressed sleptons
Soft leptons

small Δm means very soft decay products ($p_T \sim \Delta m/2$)

ATLAS is pushing lepton reconstruction to very low p_T

analysis uses 4 GeV muons and 4.5 GeV electrons!
fake lepton bkg dominant at low p_T & estimated entirely from data using "Fake Factor" method

$Z \rightarrow \tau\tau$ & top quark bkg normalized to data in dedicated control regions

data used as much as possible to estimate backgrounds
Distinct signatures

kinematic endpoint at

\[m_{\ell\ell} = \Delta m \]

from

\[N2 \rightarrow N1 \] decay

kinematic endpoint at

\[m_{T2} = 100 + \Delta m \]

from

slepton \(\rightarrow \) N1 decay
Distinct signatures

kinematic endpoint at
\[m_{\ell\ell} = \Delta m \] from
N2 \rightarrow N1 decay

shape fits in \(m_{\ell\ell} \) and \(m_{T2} \) used to improve sensitivity
Results

No significant excess seen over the background prediction.
Interpretation

Higgsino LSP
- Motivated by naturalness
- \(m(\tilde{\chi}^0_2) \approx 145 \text{ GeV} \)
- \(\Delta m \) as low as 3 GeV

Wino NLSP/bino LSP
- Motivated by DM relic abundance
- \(m(\tilde{\chi}^0_2) = m(\tilde{\chi}^1_1) \) [GeV]
- \(m(\tilde{\chi}^0_2) = m(\tilde{\chi}^0_1) \) [GeV]
- Expected limit \(\pm 1\text{σ}_{\text{exp}} \)
- Observed limit \(\pm 1\text{σ}_{\text{theory}} \)
- LEP \(\tilde{\chi}^0_1 \) excluded
- ATLAS 8 TeV \(\tilde{\chi}^0_2 \) excluded
- \(\Delta m \) as low as 2.5 GeV

Slepton NLSP/Bino LSP
- Motivated by muon g-2 tension
- \(m(\tilde{\chi}_L,R) \) [GeV]
- \(m(\tilde{\ell}_{L,R}) \) [GeV]
- Expected limit \(\pm 1\text{σ}_{\text{exp}} \)
- Observed limit \(\pm 1\text{σ}_{\text{theory}} \)
- LEP \(\tilde{\chi}^0_1 \) excluded
- ATLAS 8 TeV \(\tilde{\chi}^0_2 \) excluded
- \(\Delta m \) as low as 1 GeV

First direct limits on Higgsino since LEP! (also from CMS)

Joana Machado Miguéns (UPenn)
Compressed SUSY searches in ATLAS
LHCP 2018 - Bologna
disappearing track

ATL-PHYS-PUB-2017-019

long-lived EWKinos
Long-lived EWKinos

ultra compressed EWKinos can be long-lived
e.g. $c\tau \sim 1.5 \text{ cm} \ (0.05 \text{ ns})$ for Higgsinos with $\Delta m \sim 300 \text{ MeV}$

look for "tracklets" in ATLAS pixel layers
veto hits in the silicon strips - track disappears once C1 decays

new IBL in Run 2 allows for shorter tracks
increased sensitivity to shorter lifetimes compared to Run 1
Tracklet backgrounds

Hadron undergoes hard scattering or lepton emits a photon - pixel and SCT hits not associated to the same track

Nearby particles generate random combinations of hits

bkgs reduced with isolation & track quality requirements estimated from data templates constrained at low MET
no excess seen over the background prediction

pure higgsino LSPs with $\Delta m \sim 275$ MeV excluded up to 152 GeV

pure wino LSPs with $\Delta m \sim 160$ MeV excluded up to 460 GeV
Summary and Conclusions
Summary of EWK searches

ATLAS limits on compressed SUSY particles filling in the sensitivity gaps and extending to regions not probed since LEP!

no signs of SUSY yet but ATLAS continues to take data so stay tuned

Joana Machado Miguéns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
Back-up
Supersymmetry (SUSY)

- Fundamental symmetry between fermions and bosons that presents solutions to some problems of the SM:
 - SUSY particles provide opposite-sign loop corrections to the Higgs mass, canceling out quadratic divergencies
 - If R-parity = (-1)\(^3(B-L)+2s\) conserved, Lightest SUSY particle (LSP) is stable and natural Dark Matter candidate
 - Achieve unification of gauge couplings at \(M_{\text{GUT}} \approx 10^{16}\) GeV
How to search for SUSY

- Make **assumptions** on mass spectra and use **simplified models** to define signatures and guide searches
 - *R-parity conservation* - **RPC**: pair-produced SUSY particles decaying to LSP
 - *R-parity violation* - **RPV**: LSP decays to SM particles

- **Signal regions** built with high S/B using discriminating variables

- **Backgrounds:**
 - Irreducible predicted from MC or normalized in **control regions**
 - Reducible estimated from data-driven methods
 - Checked in **validation regions**

If coloured sparticles (including 3rd gen.) have very large masses, direct EWK-inino production becomes dominant.

Leptonic decays of charginos, neutralinos, sleptons are a main feature of EWK SUSY searches.

Distinctiveness of multileptonic signatures counterbalance low cross sections x BR.

Available Run-2 data already sufficient to probe significant portions of the parameter space.
Dark matter interpretation of ATLAS Run 1 searches

ATLAS Simulation
Samples from the initial likelihood scan
EWKh model

ATLAS
Samples from the initial likelihood scan
Excl. by Run-1 2\(\ell\) + 3\(\ell\) + 4\(\ell\)
EWKh model

Joana Machado Miguêns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
2 soft leptons MC samples

<table>
<thead>
<tr>
<th>Process</th>
<th>Matrix element</th>
<th>Parton shower</th>
<th>PDF set</th>
<th>Cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z^{()}/\gamma^ + \text{jets}$</td>
<td>SHERPA 2.2.1</td>
<td>SHERPA 2.2.1</td>
<td>NNPDF 3.0 NNLO [86]</td>
<td>NNLO [87]</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA 2.1.1 / 2.2.1</td>
<td>SHERPA 2.2.1</td>
<td>NNPDF 3.0 NNLO</td>
<td>Generator NLO</td>
</tr>
<tr>
<td>Triboson</td>
<td>SHERPA 2.2.1</td>
<td></td>
<td>NNPDF 3.0 NNLO</td>
<td>Generator LO, NLO</td>
</tr>
</tbody>
</table>

- Signal samples generated at LO using MG5_aMC@NLO with up to two extra partons and showered with Pythia8
- Resummino at NLL+NLO used to compute the cross-sections
- Madspin used for the decays of the EWK samples
- Lepton BRs computed using SUSY-HIT
2 soft leptons EWKino m_{ll}

$\sqrt{s} = 13$ TeV

$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (100, 80)$ GeV

Wino cross-sections = 4 x Higgsino cross-sections
2 soft leptons event selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Common requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of leptons</td>
<td>$= 2$</td>
</tr>
<tr>
<td>Lepton charge and flavor</td>
<td>e^+e^- or $\mu^+\mu^-$</td>
</tr>
<tr>
<td>Leading lepton $p_T^{\ell_1}$</td>
<td>> 5 (5) GeV for electron (muon)</td>
</tr>
<tr>
<td>Subleading lepton $p_T^{\ell_2}$</td>
<td>> 4.5 (4) GeV for electron (muon)</td>
</tr>
<tr>
<td>$\Delta R_{\ell\ell}$</td>
<td>> 0.05</td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td>$\in [1, 60]$ GeV excluding $[3.0, 3.2]$ GeV</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>Number of jets</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Leading jet p_T</td>
<td>> 100 GeV</td>
</tr>
<tr>
<td>$\Delta \phi(j_1, p_T^{\text{miss}})$</td>
<td>> 2.0</td>
</tr>
<tr>
<td>$\min(\Delta \phi(\text{any jet}, p_T^{\text{miss}}))$</td>
<td>> 0.4</td>
</tr>
<tr>
<td>Number of b-tagged jets</td>
<td>$= 0$</td>
</tr>
<tr>
<td>$m_{\tau\tau}$</td>
<td>< 0 or > 160 GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Electroweakino SRs</th>
<th>Slepton SRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R_{\ell\ell}$</td>
<td>< 2</td>
<td>—</td>
</tr>
<tr>
<td>m_{ℓ_1}</td>
<td>< 70 GeV</td>
<td>—</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}/H_{T^\text{lep}}$</td>
<td>$> \max \left(5, 15 - 2 \frac{m_{\ell\ell}}{1 \text{ GeV}} \right)$</td>
<td>$> \max \left(3, 15 - 2 \left(\frac{m_{100}}{1 \text{ GeV}} - 100 \right) \right)$</td>
</tr>
<tr>
<td>Binned in $m_{\ell\ell}$</td>
<td>$m_T^{\ell_2}$</td>
<td>m_T^{100}</td>
</tr>
</tbody>
</table>

$$m_{T^2}^{m_{\chi}} \left(p_T^{\ell_1}, p_T^{\ell_2}, p_T^{\text{miss}} \right) = \min_{q_T} \left(\max \left[m_T \left(p_T^{\ell_1}, q_T, m_{\chi} \right), m_T \left(p_T^{\ell_2}, p_T^{\text{miss}} - q_T, m_{\chi} \right) \right] \right)$$
2 soft leptons event selection

Joana Machado Miguéns (UPenn)
Compressed SUSY searches in ATLAS
LHCP 2018 - Bologna
2 soft leptons event selection
2 soft leptons MET/HT^{lep}

ATLAS

Higgsino, m(χ_2^0) = 100 GeV

- Total Background
- Δm(χ_2^-0, χ_1^0) = 3 GeV
- Δm(χ_2^-0, χ_1^0) = 10 GeV
- Δm(χ_2^-0, χ_1^0) = 20 GeV

ATLAS

Slepton, m(χ_2^0) = 100 GeV

- Total Background
- Δm(̄τ, χ_2^-0) = 3 GeV
- Δm(̄τ, χ_2^-0) = 10 GeV
- Δm(̄τ, χ_2^-0) = 20 GeV

ATLAS

Data / SM

Events / 2.5

ATLAS

\(\sqrt{s} = 13\) TeV, 36.1 fb\(^{-1}\)

SR/\(m_{ll}\)

Data

\(t\bar{t}\), single top

Total SM

Fake/nonprompt

Others

\(\tilde{\tau}: m(\tilde{\ell}) = (105, 100)\) GeV

\(\tilde{\tau}: m(\tilde{\ell}) = (110, 100)\) GeV

ATLAS

\(\sqrt{s} = 13\) TeV, 36.1 fb\(^{-1}\)

SR/\(m_{T2}^{100}\)

Data

\(t\bar{t}\), single top

Total SM

Fake/nonprompt

Others

\(\tilde{\tau}: m(\tilde{\ell}) = (105, 100)\) GeV

\(\tilde{\tau}: m(\tilde{\ell}) = (110, 100)\) GeV
2 soft leptons CRs and VRs

<table>
<thead>
<tr>
<th>Region</th>
<th>Leptons</th>
<th>$E_T^{\text{miss}}/H_T^{\text{lep}}$</th>
<th>Additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-top</td>
<td>$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$</td>
<td>> 5</td>
<td>≥ 1 b-tagged jet(s)</td>
</tr>
<tr>
<td>CR-tau</td>
<td>$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$</td>
<td>$\in [4, 8]$</td>
<td>$m_{\tau\tau} \in [60, 120]$ GeV</td>
</tr>
<tr>
<td>VR-VV</td>
<td>$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$</td>
<td>< 3</td>
<td>$\Delta R_{\ell\ell} < 2, m_{T_1} < 70$ GeV</td>
</tr>
<tr>
<td>VR-SS</td>
<td>$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$</td>
<td>> 5</td>
<td>$\Delta R_{\ell\ell} < 2, m_{T_1} < 70$ GeV</td>
</tr>
<tr>
<td>VRDF-$m_{\ell\ell}$</td>
<td>$e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$</td>
<td>$> \max\left(5, 15 - 2 \frac{m_{\ell\ell}}{1 \text{ GeV}}\right)$</td>
<td>$\Delta R_{\ell\ell} < 2, m_{T_1} < 70$ GeV</td>
</tr>
<tr>
<td>VRDF-$m_{T_2}^{100}$</td>
<td>$e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$</td>
<td>$> \max\left(3, 15 - 2 \left(\frac{m_{T_2}^{100}}{1 \text{ GeV}} - 100\right)\right)$</td>
<td>$\Delta R_{\ell\ell} < 2, m_{T_1} < 70$ GeV</td>
</tr>
</tbody>
</table>

$m_{\tau\tau} = \text{sign} \left(m_{\tau\tau}^2 \right) \sqrt{|m_{\tau\tau}^2|}$

$m_{\tau\tau}^2 \equiv 2 p_{\ell_1} \cdot p_{\ell_2} (1 + \xi_1)(1 + \xi_2)$

ξ_i obtained by solving $p_T^{\text{miss}} = \xi_1 p_T^{\ell_1} + \xi_2 p_T^{\ell_2}$

$m_{\tau\tau}$ negative when one of the leptons points in the opposite direction of p_T^{miss}
2 soft leptons uncertainties

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)

<table>
<thead>
<tr>
<th>Relative uncertainty</th>
<th>Fake factor</th>
<th>Statistical</th>
<th>Experimental</th>
<th>Background modeling</th>
<th>Normalization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3.2,5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5,10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[10,20]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[20,30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[30,40]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[40,60]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)

<table>
<thead>
<tr>
<th>Relative uncertainty</th>
<th>Fake factor</th>
<th>Statistical</th>
<th>Experimental</th>
<th>Background modeling</th>
<th>Normalization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[100,102]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[102,105]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[105,110]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[110,120]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[120,130]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[130,\infty]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 soft leptons VRs

ATLAS

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- Total SM
- Fake/nonprompt
- $Z(\to \tau\tau)$+jets
- Others
- Data
- $t\bar{t}$, single top
- Diboson

VRDF-m$_{ll}$ [GeV]

- VR-VV
- VR-SS ee+/ue
- VR-SS u+u+e/e+u

VRDF-m$_{T2}$ [GeV]

- 1, 3, 5, 10, 20, 30, 40, 60
- 100, 102, 105, 110, 120, 130, ∞

Events

$(n_{obs} - n_{pred}) / \sigma_{tot}$

- 2°
- 0
- -2

Joana Machado Miguéns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
2 soft leptons VR-DF

Joana Machado Miguéns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
2 soft leptons VR-VV

Events / 5 GeV

Data / SM

m_{T2}^{100} [GeV]

ATLAS

νs = 13 TeV, 36.1 fb⁻¹

VR-VV

Data

tf, single top

Total SM

Z(\rightarrow\tau\tau)+jets

Fake/nonprompt

Others

Data / SM

m_{ll} [GeV]

ATLAS

νs = 13 TeV, 36.1 fb⁻¹

VR-VV

Data

tf, single top

Total SM

Z(\rightarrow\tau\tau)+jets

Fake/nonprompt

Others

Joana Machado Miguéns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
2 soft leptons VR-SS

![Graphs showing data and SM comparisons for different mass distributions.](image-url)
2 soft leptons CRs

Data / SM

- **ATLAS**
 - $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
 - CR-top

<table>
<thead>
<tr>
<th>Events / 5 GeV</th>
<th>m_{T^2} [GeV]</th>
<th>m_{ll} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>101</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>10$^{-1}$</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10$^{-2}$</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Number of b-tagged jets

<table>
<thead>
<tr>
<th>Data / SM</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>103</td>
<td>102</td>
<td>101</td>
<td>100</td>
<td>10$^{-1}$</td>
<td>10$^{-2}$</td>
<td>10$^{-3}$</td>
<td>10$^{-4}$</td>
</tr>
</tbody>
</table>

ATLAS

- $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
- CR-tau

<table>
<thead>
<tr>
<th>Events / 5 GeV</th>
<th>m_{ll} [GeV]</th>
<th>m_{T^2} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10$^{-1}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10$^{-2}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Joana Machado Miguéns (UPenn) Compressed SUSY searches in ATLAS LHCP 2018 - Bologna
2 soft leptons NUHM2 limits

\begin{align*}
\text{NUHM2: } m_0 &= 5 \text{ TeV, } A_0 = -1.6 m_0, \tan\beta = 15, \mu = 150 \text{ GeV, } m_A = 1 \text{ TeV} \\
\sqrt{s} &= 13 \text{ TeV, } 36.1 \text{ fb}^{-1} \\
\text{Theoretical uncertainty} \\
\text{Observed limit} \\
\text{Expected limit} \\
\text{Expected } \pm \sigma_{\text{exp}} \\
\text{Expected } \pm 2 \sigma_{\text{exp}} \\
\text{All limits at 95\% CL} \\
ee/\mu\mu, m_{\tilde{\chi}_1^0} \text{ shape fit} \\
\tilde{\chi}_2^0 \rightarrow Z^* \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow W^* \tilde{\chi}_1^0
\end{align*}

\[\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \text{ [GeV]} \]

\[m_{1/2} \text{ [GeV]} \]
disappearing track higgsino lifetimes

c\tau[\text{mm}] \sim 7 \times \left[\left(\frac{\Delta m \left(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0 \right)}{340 \text{ MeV}} \right)^3 \sqrt{1 - \frac{m_{\pi}^2}{\Delta m \left(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0 \right)^2}} \right]^{-1}

Example lifetimes:

\mu = 100 \text{ GeV} \implies \Delta m = 257 \text{ MeV}, \text{ so } c\tau = 19.3 \text{ mm}

\mu = 1 \text{ TeV} \implies \Delta m = 355 \text{ MeV}, \text{ so } c\tau = 6.7 \text{ mm}
disappearing track tracklet reconstruction efficiency

ATLAS Simulation

- Fraction of chargino decays
 - EW prod., $m_{\tilde{\chi}_1} = 400$ GeV, $\tau_{\tilde{\chi}_1} = 0.2$ ns
- Pixel tracklets
- Standard tracks

Decay radius [mm]

Fraction of chargino decays [mm$^{-1}$]

Reconstruction efficiency

Pixel tracklets (EW prod., $m_{\tilde{\chi}_1} = 400$ GeV, $\tau_{\tilde{\chi}_1} = 0.2$ ns)
disappearing track event selection

<table>
<thead>
<tr>
<th>Selection requirement</th>
<th>Electroweak channel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected signal</td>
</tr>
<tr>
<td>Trigger</td>
<td>434 559 704</td>
<td>1276 (0.20)</td>
</tr>
<tr>
<td>Jet cleaning</td>
<td>288 498 579</td>
<td>1181 (0.19)</td>
</tr>
<tr>
<td>Lepton veto</td>
<td>275 243 946</td>
<td>1178 (0.19)</td>
</tr>
<tr>
<td>E_T^{miss} and jet requirements</td>
<td>2 697 917</td>
<td>579.1 (0.092)</td>
</tr>
<tr>
<td>Isolation and p_T requirement</td>
<td>464 524</td>
<td>104.2 (0.017)</td>
</tr>
<tr>
<td>Geometrical $</td>
<td>\eta</td>
<td>$ acceptance</td>
</tr>
<tr>
<td>Quality requirement</td>
<td>6134</td>
<td>29.6 (0.0047)</td>
</tr>
<tr>
<td>Disappearance condition</td>
<td>154</td>
<td>24.1 (0.0038)</td>
</tr>
</tbody>
</table>

Isolation and p_T requirements:
- $\Delta R > 0.4$ between tracklet and any jet with $p_T > 50$ GeV or MS track
- $p_T^{\text{cone40}}/p_T < 0.04$
- Candidate tracklet must be highest p_T track or tracklet in event, and have $p_T > 50$ GeV

Quality requirement:
- Hits on all four pixel layers; zero holes
- Zero “low quality” hits
- $|d_0|/\sigma(d_0) < 2$, $|z_0\sin(\theta)| < 0.5$ mm
- Fit χ^2 probability > 10

Disappearance condition: zero SCT hits associated to tracklet

Table 1:

<table>
<thead>
<tr>
<th>Decay radius [mm]</th>
<th>MET and jet requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MET > 140 GeV</td>
</tr>
<tr>
<td>9</td>
<td>at least one jet with $p_T > 140$ GeV</td>
</tr>
<tr>
<td>295</td>
<td>$\Delta\phi > 1.0$ between MET and up to four leading jets with $p_T > 50$ GeV</td>
</tr>
</tbody>
</table>

For Wino signal point:

$(m_{\tilde{\chi}_1^+}, \tau_{\tilde{\chi}_1^+}) = (400$ GeV, 0.2 ns)
disappearing track backgrounds

Track to Tracklet Smearing Validation

- Standard tracks
- Pixel tracklets
- Smeared tracks
- $Z \rightarrow \mu\mu$ candidates

Fake Tracklet Control Region

- ATLAS
- $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
- EW production
- Fake control region

Graphs

- Log-log plot of tracklets vs. p_T (GeV)
- Ratio of data to fit for tracklet smearing validation
- Comparison of data and fit in the fake tracklet control region
disappearing track fitted regions

\[\text{Tracklets} \]

\[\text{ATLAS} \quad \sqrt{s} = 13 \text{TeV}, 36.1 \text{ fb}^{-1} \]

EW production

Low \(E_T^{\text{miss}} \) region

\((m_{\chi}, \tau_{\chi}) = (400 \text{ GeV}, 0.20 \text{ ns}) \)

Data / BG

Tracklet \(p_T \) [GeV]

\[\text{Tracklets} \]

\[\text{ATLAS} \quad \sqrt{s} = 13 \text{TeV}, 36.1 \text{ fb}^{-1} \]

EW production

High \(E_T^{\text{miss}} \) region

\((m_{\chi}, \tau_{\chi}) = (400 \text{ GeV}, 0.20 \text{ ns}) \)

Data / BG

Tracklet \(p_T \) [GeV]
disappearing track uncertainties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Electroweak channel [%]</th>
<th>Strong channel [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected signal events</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>α in signal p_T resolution function</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>σ in signal p_T resolution function</td>
<td>5.3</td>
<td>7.2</td>
</tr>
<tr>
<td>$\log r_{ABCD}$</td>
<td>15</td>
<td><0.1</td>
</tr>
<tr>
<td>α in background p_T resolution function</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>σ in background p_T resolution function</td>
<td>2.2</td>
<td>5.0</td>
</tr>
<tr>
<td>p_0 parameter of the fake-BG p_T function</td>
<td>2.5</td>
<td><0.1</td>
</tr>
<tr>
<td>p_1 parameter of the fake-BG p_T function</td>
<td>8.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Expected number of muon events</td>
<td>0.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
disappearing track pure higgsino limits

\[\tilde{\chi}_1^\pm, \tilde{\chi}_1^0, \tilde{\chi}_1^\pm, \tilde{\chi}_1^0, \tilde{\chi}_1^0 \] production

ATLAS Preliminary
\[\sqrt{s}=13\text{TeV}, 36.1 \text{ fb}^{-1} \]

- Observed 95% CL limit (\(\pm 1 \sigma_{\text{theory}} \))
- \(\tilde{\chi}_1^\pm \) excluded
- Expected 95% CL limit (\(\pm 1 \sigma_{\text{exp}} \))
- Theoretical line for pure higgsino
- LEP2 \(\tilde{\chi}_1^\pm \) excluded
disappearing track yields

<table>
<thead>
<tr>
<th>Number of observed events</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of expected events</td>
<td></td>
</tr>
<tr>
<td>Hadron+electron background</td>
<td>6.1 ± 0.6</td>
</tr>
<tr>
<td>Muon background</td>
<td>0.15 ± 0.09</td>
</tr>
<tr>
<td>Fake background</td>
<td>5.5 ± 3.3</td>
</tr>
<tr>
<td>Total background</td>
<td>11.8 ± 3.1</td>
</tr>
</tbody>
</table>

Number of expected signal events
for the higgsino LSP model with $(m_{\tilde{\chi}_1^\pm}, \tau_{\tilde{\chi}_1^\pm}) = (160\,\text{GeV}, 0.05\,\text{ns})$

| 10.3 ± 2.1 |

Number of expected signal events
for the wino LSP model with $(m_{\tilde{\chi}_1^\pm}, \tau_{\tilde{\chi}_1^\pm}) = (400\,\text{GeV}, 0.2\,\text{ns})$

| 13.5 ± 2.1 |