Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna

Joana Machado Miguéns

University of Pennsylvania

on behalf of the ATLAS Collaboration

June 7th 2018

Compressed SUSY searches in ATLAS

Why compressed

and from S. Heinemeyer talk yesterday

Why compressed

and from S. Heinemeyer talk yesterday

Why compressed

and from S. Heinemeyer talk yesterday

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

2 soft leptons (e+e-/\mu+\mu-) compressed EWKinos compressed sleptons

Compressed SUSY searches in ATLAS

Will focus on searches for EWK production of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

disappearing track 2 soft leptons ($e^+e^-/\mu^+\mu^-$) compressed EWKinos | compressed sleptons long-lived EWKinos qp \boldsymbol{Q} pp $\tilde{\chi}_1^0$ small ∆m small ∆m small ∆m $\tilde{\chi}_2^0$ p π^{\pm}

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

exploit distinct features from decay products

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

exploit distinct features from decay products soft lepton mass edges and disappearing tracks

Will focus on searches for **EWK production** of SUSY particles

check out J. Long, Y. Nakahama and B. Petersen's talks for strong production

exploit distinct features from decay products soft lepton mass edges and disappearing tracks ISR jet selection enhances MET from soft LSPs

ATLAS: A Toroidal LHC ApparatuS

major upgrades for Run 2 detectors (e.g. IBL), trigger, DAQ, reconstruction

excellent performance under challenging LHC conditions peak lumi 2.14 x 10³⁴ cm⁻² s⁻¹ over 64 interactions per crossing

analyses use 36 fb⁻¹ of 13 TeV pp LHC data collected by ATLAS 2015 + 2016

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

2 soft leptons (e+e-/µ+µ-)

Phys. Rev. D 97, 052010 (2018)

compressed EWKinos

compressed sleptons

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna 16

Soft leptons

small Δm means very soft decay products (p_T ~ Δm/2) ATLAS is pushing lepton reconstruction to very low p_T analysis uses 4 GeV muons and 4.5 GeV electrons!

Backgrounds

fake lepton bkgs dominant at low p_T & estimated entirely from data using "Fake Factor" method $Z \rightarrow \tau \tau$ & top quark bkgs

normalized to data in dedicated control regions

data used as much as possible to estimate backgrounds

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

Distinct signatures

Distinct signatures

shape fits in mee and m_{T2} used to improve sensitivity

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

Results

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

Interpretation

first direct limits on Higgsino since LEP! (also from CMS)

Compressed SUSY searches in ATLAS

disappearing track

arXiv:1712.02118 [hep-ex]

ATL-PHYS-PUB-2017-019

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna 23

Long-lived EWKinos

ultra compressed EWKinos can be long-lived e.g. $c\tau \sim 1.5$ cm (0.05 ns) for Higgsinos with $\Delta m \sim 300$ MeV

look for **"tracklets"** in ATLAS pixel layers veto hits in the silicon strips - track *disappears* once C1 decays

new IBL in Run 2 allows for shorter tracks increased sensitivity to shorter lifetimes compared to Run 1

Tracklet backgrounds

hadron undergoes hard scattering or lepton emits a photon - pixel and SCT hits not associated to the same track nearby particles generate random combinations of hits

bkgs reduced with isolation & track quality requirements estimated from data templates constrained at low MET

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

no excess seen over the background prediction pure higgsino LSPs with $\Delta m \sim 275$ MeV excluded up to 152 GeV pure wino LSPs with $\Delta m \sim 160$ MeV excluded up to 460 GeV

Summary and Conclusions

Summary of EWK searches

many more <u>here</u>...

28

ATLAS limits on compressed SUSY particles filling in the sensitivity gaps and extending to regions not probed since LEP! no signs of SUSY yet but ATLAS continues to take data so stay tuned

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna 29

Feynment digmentality that $\langle H \rangle$ is approximately 174 Cover to the first digent of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the provide of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the potential of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the potential of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the potential of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the potential of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the potential of the potential of the potential. This occurs if $\lambda > 0$ and $m_{H_2}^2$ set to the potential of the p

- Fundamental symmetry between fermions Figure 1.1: One-loop quantum corrections to the the square of the source of the square of the square
 - SUSY particles provide opposite-sign loop³ corrections to the Higgs mass, canceling out quadratic divergencies
 - If R-parity = (-1)^{3(B-L)+2s} conserved, Lightest SUSY particle (LSP) is stable and natural Dark Matter candidate
 - Achieve unification of gauge couplings at $M_{GUT}\approx 10^{16}~GeV$

How to search for SUSY

- Make assumptions on mass spectra and use simplified models to define signatures and guide searches
 - *R-parity conservation RPC*: pairproduced SUSY particles decaying to LSP
 - *R-parity violation RPV*: LSP decays to SM particles
- Signal regions built with high S/B using discriminating variables
- Backgrounds:
 - Irreducible predicted from MC or normalized in **control regions**
 - Reducible estimated from datadriven methods
 - Checked in validation regions

Dark matter interpretation of ATLAS Run 1 searches

Compressed SUSY searches in ATLAS

2 soft leptons MC samples

Process	Matrix element	Parton shower	PDF set	Cross-section
$Z^{(*)}/\gamma^* + \text{jets}$	Sherpa 2.2.1		NNPDF 3.0 NNLO [86]	NNLO [87]
Diboson	Sherpa 2.1.1 / 2.2.1 / 2.2.2		NNPDF 3.0 NNLO	Generator NLO
Triboson	Sherpa 2.2.1		NNPDF 3.0 NNLO	Generator LO, NLO
$t\bar{t}$	Powheg-Box v2	Рутніа 6.428	NLO CT10 [88]	NNLO+NNLL [89,90,91,92]
t (s-channel)	Powheg-Box v1	Рутніа 6.428	NLO CT10	NNLO+NNLL [93]
t (t-channel)	Powheg-Box v1	Рутніа 6.428	NLO CT10f4	NNLO+NNLL [94,95]
t+W	Powheg-Box v1	Рутніа 6.428	NLO CT10	NNLO+NNLL [96]
$h(\to \ell\ell, WW)$ $h + W/Z$	Powheg-Box v2	Рутніа 8.186	NLO CTEQ6L1 [97]	NLO [98]
	MG5_aMC@NLO 2.2.2	Рутніа 8.186	NNPDF 2.3 LO	NLO [98]
$ \begin{array}{r} t\bar{t} + W/Z/\gamma^* \\ t\bar{t} + WW/t\bar{t} \\ t+Z \\ t+WZ \\ t+t\bar{t} \end{array} $	MG5_aMC@NLO 2.3.3	Рутніа 8.186	NNPDF 3.0 LO	NLO [64]
	MG5_aMC@NLO 2.2.2	Рутніа 8.186	NNPDF 2.3 LO	NLO [64]
	MG5_aMC@NLO 2.2.1	Рутніа 6.428	NNPDF 2.3 LO	LO [64]
	MG5_aMC@NLO 2.3.2	Рутніа 8.186	NNPDF 2.3 LO	NLO [64]
	MG5_aMC@NLO 2.2.2	Рутніа 8.186	NNPDF 2.3 LO	LO [64]

- Signal samples generated at LO using MG5_aMC@NLO with up to two extra partons and showered with Pythia8
- Resummino at NLL+NLO used to compute the cross-sections
- Madspin used for the decays of the EWK samples
- Lepton BRs computed using SUSY-HIT

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

2 soft leptons EWKino mee

Wino cross-sections = 4 x Higgsino cross-sections

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

2 soft leptons event selection

Variable	Common requirement		
Number of leptons	= 2		
Lepton charge and flavor	e^+e^- or $\mu^+\mu^-$		
Leading lepton $p_{\rm T}^{\ell_1}$	> 5 (5) GeV for electron (muon)		
Subleading lepton $p_{\rm T}^{\ell_2}$	> 4.5 (4) GeV for electron (muon)		
$\Delta R_{\ell\ell}$	> 0.05		
$m_{\ell\ell}$	$\in [1, 60]$ GeV excluding $[3.0, 3.2]$ GeV		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200 GeV		
Number of jets	≥ 1		
Leading jet $p_{\rm T}$	> 100 GeV		
$\Delta \phi(j_1, {f p}_{ m T}^{ m miss})$.	> 2.0		
$\min(\Delta \phi(\text{any jet}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}))$	> 0.4		
Number of <i>b</i> -tagged jets	= 0		
$m_{ au au}$	< 0 or > 160 GeV		
	Electroweakino SRs	Slepton SRs	
$\Delta R_{\ell\ell}$	< 2		
$m_{ m T}^{\ell_1}$	$< 70 { m ~GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}/H_{\mathrm{T}}^{\mathrm{lep}}$	$> \max\left(5, 15 - 2\frac{m_{\ell\ell}}{1 \ GeV}\right)$	$> \max\left(3, 15 - 2\left(\frac{m_{\mathrm{T2}}^{100}}{1 \ GeV} - 100\right)\right)$	
Binned in	$m_{\ell\ell}$	$m_{\rm T2}^{100}$ (, , , , , , , , , , , , , , , , , ,	

$$m_{\mathrm{T2}}^{m_{\chi}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}},\mathbf{p}_{\mathrm{T}}^{\ell_{2}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right) = \min_{\mathbf{q}_{\mathrm{T}}}\left(\max\left[m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}},\mathbf{q}_{\mathrm{T}},m_{\chi}\right),m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{2}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}-\mathbf{q}_{\mathrm{T}},m_{\chi}\right)\right]\right)$$

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

2 soft leptons event selection

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna

2 soft leptons event selection

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

LHCP 2018 - Bologna

2 soft leptons MET/HT^{lep}

Joana Machado Miguéns (UPenn)

2 soft leptons CRs and VRs

Region	Leptons	$E_{\mathrm{T}}^{\mathrm{miss}}/H_{\mathrm{T}}^{\mathrm{lep}}$	Additional requirements
CR-top CR-tau	$e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$ $e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}, e^{\pm}\mu^{\mp}, \mu^{\pm}e^{\mp}$		$\geq 1 \ b$ -tagged jet(s) $m_{\tau\tau} \in [60, 120] \ \text{GeV}$
VR-VV VR-SS VRDF- $m_{\ell\ell}$ VRDF- $m_{\rm T2}^{100}$	$\begin{array}{c} e^{\pm}e^{\mp}, \ \mu^{\pm}\mu^{\mp}, \ e^{\pm}\mu^{\mp}, \ \mu^{\pm}e^{\mp} \\ e^{\pm}e^{\pm}, \ \mu^{\pm}\mu^{\pm}, \ e^{\pm}\mu^{\pm}, \ \mu^{\pm}e^{\pm} \\ e^{\pm}\mu^{\mp}, \ \mu^{\pm}e^{\mp} \\ e^{\pm}\mu^{\mp}, \ \mu^{\pm}e^{\mp} \end{array}$		$\Delta R_{\ell\ell} < 2, m_{\rm T}^{\ell_1} < 70 {\rm GeV}$

$$\begin{split} m_{\tau\tau} &= \operatorname{sign} \left(m_{\tau\tau}^2 \right) \sqrt{\left| m_{\tau\tau}^2 \right|} \\ m_{\tau\tau}^2 &\equiv 2p_{\ell_1} \cdot p_{\ell_2} (1 + \xi_1) (1 + \xi_2) \\ \xi_i \text{ obtained by solving } \mathbf{p}_T^{\text{miss}} &= \xi_1 \mathbf{p}_T^{\ell_1} + \xi_2 \mathbf{p}_T^{\ell_2} \\ m_{\tau\tau} \text{ negative when one of the leptons points in the opposite direction of pTmiss} \end{split}$$

2 soft leptons uncertainties

2 soft leptons VRs

2 soft leptons VR-DF

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

2 soft leptons VR-VV

2 soft leptons VR-SS

Joana Machado Miguéns (UPenn)

2 soft leptons CRs

Compressed SUSY searches in ATLAS

2 soft leptons NUHM2 limits

Joana Machado Miguéns (UPenn)

disappearing track higgsino lifetimes

$$c\tau[\text{mm}] \sim 7 \times \left[\left(\frac{\Delta m \left(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1,2}^{0} \right)}{340 \,\text{MeV}} \right)^{3} \sqrt{1 - \frac{m_{\pi}^{2}}{\Delta m \left(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1,2}^{0} \right)^{2}}} \right]^{-1}$$

Example lifetimes:

 $\mu = 100 \text{ GeV} \Longrightarrow \Delta m = 257 \text{ MeV}, \text{ so ct} = 19.3 \text{ mm}$

 $\mu = 1 \text{ TeV} \implies \Delta m = 355 \text{ MeV}, \text{ so } c\tau = 6.7 \text{ mm}$

disappearing track tracklet reconstruction efficiency

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

disappearing track event selection

Selection requirement Elec		eak channel	For Wino signal point:		
	Observed	Expected signal	$(m_{\tilde{\chi}_1^{\pm}}, \tau_{\tilde{\chi}_1^{\pm}}) = (400 \text{ GeV}, 0.2 \text{ ns})$		
Trigger	434 559 704	1276 (0.20)	MET and jet requirements		
Jet cleaning	288 498 579	1181 (0.19)	• MET > 140 GeV		
Lepton veto	275 243 946	1178 (0.19)			
$E_{\rm T}^{\rm miss}$ and jet requirements	2697917	579.1 (0.092)	 at least one jet with 		
Isolation and $p_{\rm T}$ requirement	464 524	104.2 (0.017)	p⊤ > 140 GeV		
Geometrical $ \eta $ acceptance	339 602	83.6 (0.013)	• $\Delta \phi > 1.0$ between MET		
Quality requirement	6134	29.6 (0.0047)	and up to four leading		
Disappearance condition	154	24.1 (0.0038)	jets with p _T > 50 GeV		
• $\Delta R > 0.4$ between trac	-		 Hits on all four pixel layers; zero holes Zero "low quality" hits d₀ /σ(d₀) < 2, z₀sin(θ) < 0.5 mm Fit X² probability > 10% 		
 jet with p_T > 50 GeV o p_T^{cone40}/p_T < 0.04 Candidate tracklet mu p_T track or tracklet in e 	ist be highes	• $ d_0 /\sigma(d_0) <$	$ z_0 \sin(\theta) < 0.5 \text{ mm}$		
 p_T^{cone40}/p_T < 0.04 Candidate tracklet mu 	ist be highes	• $ d_0 /\sigma(d_0) <$ • Fit χ^2 prob Disa	2 z ₀ sin(θ) < 0.5 mm Dability > 10% Appearance condition: zero		
 p_T^{cone40}/p_T < 0.04 Candidate tracklet mu p_T track or tracklet in e 	ist be highes event, and	• $ d_0 /\sigma(d_0) <$ • Fit χ^2 prob Disa	2, z ₀ sin(θ) < 0.5 mm Dability > 10%		

disappearing track backgrounds

Compressed SUSY searches in ATLAS

disappearing track fitted regions

Joana Machado Miguéns (UPenn)

disappearing track uncertainties

Parameter	Electroweak channel [%]	Strong channel $[\%]$
Expected signal events	11	13
α in signal $p_{\rm T}$ resolution function	0.8	1.5
σ in signal $p_{\rm T}$ resolution function	5.3	7.2
$\log r_{ m ABCD}$	15	< 0.1
α in background $p_{\rm T}$ resolution function	5.0	1.2
σ in background $p_{\rm T}$ resolution function	2.2	5.0
p_0 parameter of the fake-BG p_T function	2.5	< 0.1
p_1 parameter of the fake-BG p_T function	8.5	0.1
Expected number of muon events	0.5	0.9

Compressed SUSY searches in ATLAS

disappearing track pure higgsino limits

Joana Machado Miguéns (UPenn)

Compressed SUSY searches in ATLAS

disappearing track yields

Number of observed events					
	9				
Number of expected events					
Hadron+electron background	6.1 ± 0.6				
Muon background	0.15 ± 0.09				
Fake background	5.5 ± 3.3				
Total background	11.8 ± 3.1				
Number of expected signal events					
for the higgsino LSP model with $(m_{\tilde{\chi}_1^{\pm}}, \tau_{\tilde{\chi}_1^{\pm}}) = (160 \text{GeV}, 0.05 \text{ns})$					
	10.3 ± 2.1				
Number of expected signal events					
for the wino LSP model with $(m_{\tilde{\chi}_1^{\pm}}, \tau_{\tilde{\chi}_1^{\pm}}) = (400 \text{GeV}, 0.2 \text{ns})$					
	13.5 ± 2.1				