

Sudha Ahuja ON BEHALF OF THE CMS COLLABORATION

SPRACE-UNESP, São Paulo, Brazil

LHCP, Bologna, Italy, June 4-9 2018

Outline

Introduction

- Dark Matter
- Collider Searches

CMS results

- Mono-X searches
- Mediator searches

Summary

<u>http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html</u> <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO/index.html</u>

Dark Matter

Well established evidence

Underlying nature still unknown

Hunt for DM

Direct detection

- LUX, XENON, SuperCDMS, CRESST
- Indirect detection
 - Pamela, Fermi, AMS, IceCube
- Production at Colliders
 - Rich playground for DM production & detection
 - Sensitive to wide-mass range

Collider Searches

DM signal at colliders

- Trigger events using recoiling SM objects
- Initial-state radiation to rescue (X)
 - X = jet/photon/W/Z
- Infer presence by large amount of missing transverse energy (MET)

Run2: Simplified Models

- DM interaction through mediator
 - Explicit definition of mediator
 - Multiple parameters
 - \circ M_{med}, M_{DM}, g_{SM}, g_{DM}
 - High momentum transfer possible a

LHC DM Forum, arxiv:1507.00966v1

Mono-X Searches

The Classic: Mono-J/V Searches

Most sensitive final state

- Large MET signals
- Signal extraction based on MET distribution

Main backgrounds: Z(vv)+jets & W(lv) +jets

Well modeled from control regions in data

- Z(μμ)+jets, Z(ee)+jets, γ+jets, W(μν) +jets, W(eν)+jets
- Simultaneous fit to signal and control regions
- No deviation observed w.r.t. SM expectation

Signature similar to hadronically decaying boosted mono-V

□ Use jet substructure for identification

PRD 97 (2018) 092005

DM Interpretations

- 95% C.L. upper limits obtained in the M_{DM}^{-} M_{med} plane
- Results translated to 90% C.L upper limits in comparison to DD experiments
- Various other interpretations such as fermion portal DM, non thermal DM results etc. also presented

PRD 97 (2018) 092005

Mono-Z (leptonic) Searches

Complements the monojet searches in exploring the mono-V aspects of DM models Main backgrounds: ZZ, WZ Lacks sensitivity to scalar mediators

Mono-X summary 2017

Not sensitive to region M_{med} < 2M_{DM}

Hadronic Mono-Top

Hadronically decaying boosted Top Quark (67% BR)

- Substructure techniques for Top tagging
 - Energy correlation function, N-subjettiness & top-tagger
 - Inputs used in BDT to discriminate backgrounds
- Z(vv)+jets, W(lv)+jets & ttbar

DM Models

- FCNC mediator (V): decays to DM pair
- Colored charged scalar: decays to DM+top

Simultaneous fit 2 SR and CRs

CMS-PAS-EXO-16-051; arXiv 1801.08427

DM With Top Quark Pair

- DM couples preferentially to top quarks via spin-0 mediators
 - Results interpreted in terms of Spin-0 mediators
- Combination of hadronic, semi-leptonic, di-leptonic
 - □ Final states with 0,1, or 2 leptons presented
- Obtained exclusion upto 100 GeV mediator mass even with dileptonic channel alone
- 2D exclusion limits on coupling strength as a function of mediator & DM mass

Mono-Higgs Analysis (1)

WIMP may interact with SM through the Higgs sector

Two benchmark models: Z'-2HDM (resonant) & baryonic Z'

Combination of γγ (experimentally simple) & ττ (lower background) modes

- More discrimination power
- Can probe lower MET states
- ττ channel
 - $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ final states
 - W+jets & QCD major backgrounds

Signal extraction: Simultaneous fits to transverse mass in SR and CR

CMS-PAS-EXO-16-055

Mono-Higgs Analysis (2)

Mono-Higgs (bb) is the most sensitive channel

Single Fat-jet with mass consistent with the SM Higgs B-tagged & 2 prong structure

Sets most stringent constrain to date on Z'-2HDM model

CMS-PAS-B2G-17-004

Mediator Searches: Dijet Analysis

Mediators couple to SM particles

DM particles couple to quarks via spin-1 DM mediator

- Dijet angular analysis: angular distributions fit for different di-jet mass bins
 - New physics identified by excess at low values

Resonance searches:

- Mediator decays to pair of DM particles or jets
- Narrow or broad resonance (explore various quark coupling strength)
- Limits on mediator in the plane of m_{DM} vs the M_{med}
 - Excluded value of M_{med} increases with m_{DM}

Dijet Summary

Limits on universal coupling (between leptophobic Z' and quarks) from various dijet analyses

For $M_{DM} > M_{med}/2$:

Dijet cross-section from mediator models identical to leptophobic Z' models

Summary

Wide range of rich CMS program for DM searches

- Mono-X searches
- Mediator parameters constrained by di-jet or di-lepton searches
- Results interpreted in terms of simplified models

Substructure techniques used for boosted objects

Lot more data to analyze from 2017

Gain sensitivity to various searches

Stay Tuned!!

Comparison with Direct Detection experiments