PAUL SCHERRER INSTITUT

Andreas Crivellin

Theory Group of the Laboratory for Particle Physics Flavour Anomalies

Bologna, 04.06.2018

Outline

- Introduction: Flavour anomalies
 - $-b \rightarrow s\mu^+\mu^-$
 - −b→сτv
 - $-a_{\mu}$ (anomalous magnetic moment of the muon)
- New Physics explanations for the anomalies
 - Z', W'
 - Leptoquarks,
 - MSSM, 2HDMs, extra dimensions,...
- Simultaneous explanations with leptoquarks
- Conclusions and outlook

Finding New Physics with Flavour

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavours

Flavour observables are sensitive to higher energy scales than collider searches

New Physics in the Flavour Sector

2 Accelerators Find Particles That **May Break Known Laws of Physics**

The LHC and the Belle experiment have found particle decay patterns that violate the Standard Model of particle physics, confirming earlier observations at the BaBar facility

By Clara Moskowitz | September 9, 2015 | Véalo en español

Tensions in the Standard Model

Hints for **New Physics** in flavour observables

 $R(K^{(*)}) = B \rightarrow K^{(*)}\mu^{+}\mu^{-}/B \rightarrow K^{(*)}e^{+}e^{-}$

Combined $\approx 4\sigma$ evidence for LFUV

 $R(K^{(*)}) = B \rightarrow K^{(*)}\mu^{+}\mu^{-}/B \rightarrow K^{(*)}e^{+}e^{-}$

Combined $\approx 4\sigma$ evidence for LFUV

Global fit to $b \rightarrow s\mu^+\mu^-$ data

- Global analyses of all b→sµ+µ- data gives a very good fit to data
- Good fit to data:
 - C_9 • $C_9 = -C_{10}$ • $C_9 = -C'_9$
- $O_9 = \overline{s} \gamma^{\mu} P_L b \overline{\ell} \gamma_{\mu} \ell$

$$O_{10} = \overline{s} \gamma^{\mu} P_L b \overline{\ell} \gamma_{\mu} \gamma^5 \ell$$

B. Capdevila, AC, S. Descotes-Genon, J. Matias and J. Virto, arXiv:1704.05340 [hep-ph].

Fit is >5 σ better than the SM

b→cτv processes

All measurements above the SM prediction 4σ deviation

b→cτν processes

All measurements above the SM prediction 4σ deviation

Muon Anomalous Magnetic Moment

- Single measurement from BNL
- Theory prediction sound but challenging because of hadronic effects.

$$\Delta a_{\mu} = (236 \pm 87) \times 10^{-11}$$

Soon new experimental results from Fermilab

3σ deviation (order of SM-EW contribution)

Hints for New Physics

R(D) & R(D*)

- Charged scalars
 - Problems with q² distributions and B_c lifetime
- W'
 - Strong constraints from direct LHC searches
- Leptoquark (also in the RPV MSSM)
 - EW precision constraints
 - **Strong signals in qq \rightarrow \tau\tau searches**

Explanation difficult but possible with Leptoquarks

$R(D^{(*)})$ and $b \rightarrow s\tau\tau$ (model-independent)

- Large couplings to the second generation
- Cancelation in b \rightarrow svv needed: C⁽¹⁾=C⁽³⁾

a_{μ} explanations

MSSM

- tan(ß) enhanced slepton loops
- Scalars
 - Light scalars with enhanced muon couplings
- Z′
 - Very light with τµ couplings (m_τ enhancement)
- Leptoquarks
 - m_t enhaned effects

Chiral enhancement or very light particles

Leptoquarks in a_{μ}

Chirally enhanced effects via top-loops

 $Z \rightarrow \mu \mu$ at future colliders

$b \rightarrow s \mu \mu$ explanations

Loop effects of scalars and fermions

Even high scale NP explanations possible

Implications for New Particles

Vector Leptoquark SU(2) Singlet

- $C_9 = -C_{10}$ effect in $b \rightarrow s\mu\mu$
- Left handed vector current in R(D) and R(D*)
- No effect in $b \rightarrow svv$
- No proton decay
- Contained within the Pati-Salam model
- Massive vector bosons
 - Non-renormalizable without Higgs mechanism
 - Pati Salam not possible at the Tev scale because of $K_L \rightarrow \mu e$ and $K \rightarrow \pi \mu e$

Good solution, but difficult UV completion

Pati-Salam + Randall-Sundrum

M. Blanke, AC, arXiv:1801.07256

- $SU(4) \otimes SU(2)_L \otimes SU(2)_R$ broken to the SM via boundary conditions on a compact extra dimension
- •Zero modes: SM fermions
- •KK modes: Vector-like fermions and massive gauge bosons
- •No zero mode for the Leptoquark
- Flavour alignment to the down-sector

PS + RS naturally accounts for a vector LQ + VLFs

PS+RS Phenomenology

Modell well motivated + limited but sizable effect

Conclusions & Outlook

• P5' b→dµµ • R(D) & R(D*) b→sττ • R(K) & R(K*) µ→eγ • R(D), R(D*) & a₁₁ $\tau \rightarrow \mu \gamma$ • R(D), R(D*) & b \rightarrow sµµ $b \rightarrow s\tau\mu$

Exciting times in particle physics are ahead of us!

AC, D. Mueller, T. Ota Two Scalar Leptoquarks arxiv:1703.09226

PAUL SCHERRER INSTITU

S

- Φ_1 scalar leptoquark singlet with Y=-2/3
- Φ_3 scalar leptoquark triplet with Y=-2/3

$R(D^{(*)})$ and $b \rightarrow s \mu \mu$

Simultaneous explanation possible! Can also account for the AMM of the muon

Flavour effects

• b→стv

• b→sµµ

• $\tau \rightarrow \mu\mu\mu \& D$ mixing

D mixing $\tau \rightarrow \mu \mu \mu$ and cannot be avoided

 $R(D^{(*)})$, b \rightarrow svv with 2 Scalar LQs

PAUL SCHERRER INSTITUT