

Searches for Long-Lived Particles with LHCb

Elena Dall'Occo on behalf of the LHCb collaboration

The Sixth Annual Large Hadron Collider Physics Conference LHCP 2018

Bologna 4-9/06/2018

LHCb Detector

Int.J.Mod.Phys. A 30,1530022 (2015) JINST 10 (2015) P06013

Figure 19: Mass resolution (σ_m) (left) and relative mass resolution (right) as a function of the

LHCP - 07/96/20 p8 the dimuon resonance. The mass of the muons careles are been and the invariant mass calculation of these resonances. The mass resolution is obtained from a fit to the mass

LLP Tracks

tracks with VELO hits

 accessible decay lengths at LHCb ~20 cm (decay within the VELO)

tracks without VELO hits

- worse momentum and vertex resolution
- not available in HLT1 (studies on going)
- decay length accessible would be extended up to ~200 cm

Trigger

J. Phys. Conf. Ser. 664, 082004 (2015)

very soft triggers!

at hardware level (L0):

- muons with $p_T > 1.5 \text{ GeV}$
- calo deposits with $E_T > 3 \text{ GeV}$

new **turbo** lines since 2015:

- store online reconstructed particles
- reduce event size by discarding lower level info
- output can be directly used for analysis

at software level (HLT):

- topological triggers on detached vertices
- PID and jets in trigger

excellent for light dimuons (prompt and detached)

- Light mass (trigger and acceptance)
- Anything that requires excellent secondary vertexing
- Increasing interest in direct searches!
 - 1. Exotic resonances in B/D decays (prompt / long-lived)
 - Direct production of new particles (prompt / long-lived) displaced dileptons
 - light boson from $b \rightarrow s$
 - Majorana neutrino Matter 2016

g

background tunner reduced with raciditionant constraints and vertice(sottom) approach in searches. In the top diagram, a Majorana neutrino is produced off-shell in a $D^+_{(s)}$ decay to a final state with two same-sign muons (with the same diagram, the Majorana neutrino could be also produced on-shell). In the bottom one, a hidden valley pion is produced on-shell to later decay to a pair of jets.

b

LHCP - 07/06/2018

VELO Material

material map of the VELO is essential to reduce the background in LLP searches!

- beam-gas (helium) collisions
- material interaction along the full length of the VELO
- secondary interactions of hadrons used to map the material

 the map can be used in analyses with displaced vertices:

a p-value can be assigned to the hypothesis that a SV originates from material interaction

analysis already performed for Run1 and Run2!

Light Boson from $b \rightarrow s$

 $B^{0} \rightarrow K^{*0} \ \chi$ with $K^{*0} \rightarrow K^{+} \ \pi^{-} \ and \ \chi \rightarrow \mu^{+} \ \mu^{-}$

- $2 m(\mu) < m(\chi) < m(B^0) m(K^{*0})$
- K⁺ π⁻ vertex requirement: better decay time resolution and reduced background
- 2 region of dimuon lifetime per mass point (displaced for T>0.6-3 ps depending on the mass)

Similar strategy for both analyses

Phys. Rev. Lett. 115, 161802 (2015) Phys. Rev. D. 95, 071101 (2017)

- search for a hidden sector boson χ in a decay mediated by $b \rightarrow s$ transition
- interaction via Higgs portal
- dataset: run I (3 fb⁻¹)
 - **B**⁺ → **K**⁺ **χ** with $χ → μ^+ μ^-$
 - 250 < m(χ) < 4700 MeV
 - more background (SM B \rightarrow Kµµ for prompt)
 - higher BR
 - 3 region of dimuon lifetimes (t<1 ps, 1<t<10 ps, t>10 ps)
- $\chi \rightarrow \mu^+ \mu^-$ vertex allowed (but not required) to be displaced
- BDT classifier trained to reduce combinatorial (uniform in m and τ for K^{*0} search)
- narrow resonances vetoed

Light Boson from $b \rightarrow s$

Phys. Rev. Lett. 115, 161802 (2015) Phys. Rev. D. 95, 071101 (2017)

scan of the dimuon mass distribution

model independent limit

- upper limits as a function of mass for lifetimes [0.1,1000] ps
- precision on the upper limits dominated by statistical uncertainties
- efficiency drops at ~100 ps due to VELO acceptance

Light Boson from $b \rightarrow s$

model dependent limits

axion model (axial vector portal)

Phys. Rev. D 81, 034001 (2010)

- limit on the ratio of Higgs-doublet vacuum expectation values
- BR($\chi \rightarrow$ hadrons) changes a lot in different models: two extreme cases considered

inflaton model (scalar portal)

Phys. Lett. B 736, 494 (2014)

- constraint on mixing angle $\boldsymbol{\theta}$ with SM Higgs
- excluded large fraction of theoretically allowed parameter space

Phys. Rev. Lett. 115, 161802 (2015) Phys. Rev. D. 95, 071101 (2017)

Majorana Neutrinos

- search for lepton number violating decay $B^{\scriptscriptstyle -} \to \pi^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -} \, \mu^{\scriptscriptstyle -}$
- mass range: 250 MeV 5 GeV
- lifetime range: 0-1000 ps (extending sensitivity wrt previous LHCb analyses)
- dataset: run I (3 fb⁻¹)

Phys. Rev. Lett. 112, 131802 (2014)

model independent upper limits

- normalisation wrt $B^{\scriptscriptstyle -} \to J/\Psi~K^{\scriptscriptstyle -}$
- 2 selections: for short and long lived N (T > 1 ps)
- fitted backgrounds:
 - B decays to charmonium
 - combinatorics
- upper limits set scanning the neutrino mass
- lifetime dependence in long lived sample taken into account by detection efficiency

Majorana Neutrinos

constraints on the BR reinterpreted as limits on N mixing angle

we are now looking here...

LHCb and Belle limits revised in: Phys. Rev. D94, no.11, 113007 (2016) Phys. Rev. D95, no.9, 099903 (2017)

LLPs Decaying to Jet Pairs

- search for hidden sector LLP produced via SM Higgs portal
- mass range: 25-50 GeV
- lifetime range: 2-500 ps
- dataset: run I (2 fb⁻¹)
- signature: single displaced vertex with 2 associated jets

upper limits set on SM-Higgs BR to dark pions

LLPs Decaying to Jet Pairs

Eur. Phys. J. C77 (2017) 812

upper limits set on SM-Higgs BR to dark pions

Supplementary material of LHCB-PAPER-2016-065

LLP Decayi Mgn Selection leptonically

- lifetime range: 5-100 ps
- dataset: run I (1+2 fb⁻¹)
- signature: single displaced vertex with several tracks and a high $p_{\text{T}}\,\mu$
- background dominated by $b\overline{b}$

LLP Decaying Semileptonically

En 10^{-2} 20 40 60 80 LLFEur. Phys. J. C (2017) 77:224 Data 8 TeV LHCb Entries/(1.5 GeV/ c^2) 10 Fit: total trigger on μ + displaced vertex GeV/c^2 background signal exploit µ isolation to define a signal and a control region enhanced in background Entries/(2 (simultaneous fit of the LLP mass in the 2 10regions to extract number of candidates 38 GeV, 5 ps 20 40 60 802 $[\text{GeV}/c^2]$ LLP mass 10^{-1} no significant excess observed double LLP from 125 GeV Higgs **RPV mSUGRA** 10 10 LHCb $\tau_{\rm LLP} = 5 \, \rm ps$ $m_{\tilde{\rm q}} = 1300 \, {\rm GeV}/c^2$ 10 Cross-section [pb] Cross-section [pb] Cross-section [pb] $\sqrt{s} = 8 \text{ TeV}$ section $\sqrt{s} = 8 \text{ TeV}$ $\tau_{\rm LLP} = 50\,\rm{ps}$ 10^{-1} 10 LHCb 10^{-1} 50 100 150 50 40150 2060 200 20 100 [GeV/c²] LLP mask P mase V/c GeV/ c^2 LLP mass Elena Dall⁰Occo LHCP - 07/06/2018 16

LLP Decaying Semileptonically

Summary

Increasing interest in direct searches

- LHCb proved to be competitive in many signatures
 - low masses
 - low lifetimes
 - LLP from B decays
- unique coverage complementary to ATLAS and CMS
- 3 fb⁻¹ in Run 1, expected +6 fb⁻¹ in Run 2

Lot of potential with the upgrade in LS2

- more data (5x instantaneous luminosity)
- triggerless readout
- potential improved efficiency for longer decay lengths

Charged Massive Stable Particle

- search for charge massive stable particles (CMSP)
- benchmark: stau pairs predicted by mGMSB model
- mass range: 124-309 GeV •
- dataset: run I (3 fb⁻¹) •
- signature: absence of a signal in the RICH

upper limits set on Drell-Yan CMSP pair production cross section

staus assumed to interact only via weak interactions

behave like heavy muons

- detection time window for muons limits sensitivity to β >0.8
- main background: Drell-Yan production of muon pairs

proof of concept for future searches!

EPJC 75 (2015) 595

Dark Photon

Phys. Rev. Lett. 120, 061801 (2018)

22–24], collider [25–27], and rare-meson-decay [28–37] exon is ruled ou A' dark photon masses $m(A') \leq 10$ MeV (ϵ Additional $\varepsilon g_e = 1$, receive $\varepsilon^2 \gtrsim 5 \times 10^{-7}$ is excluded for m(A') <all of the remaining tew-loop region below A' nucle threshold the remaining tew-loop region below A' nucle threshold to further explore that $[m(A \ \varepsilon g_e)]$ parameter εg_e ace [is earch for $A' \rightarrow \mu^+ \mu^-$ decays with the LHCb experiment, we notivity to large regions of otherwise inaccessible parameter of during Run 3 of the LHC (2021–2023) [50]. noton produced in proton-proton, pp, collisions via $\gamma - A'$ minimize that of an off-shell photon with $m(\gamma^*) = m(A')$; the

- fully data driven search
- dataset: run II (1.6 fb⁻¹)
- inclusive: $pp \rightarrow X A' \rightarrow X \mu^+\mu^-$
- if m x ϵ^2 small dark photon is long-lived
- trigger turbo lines:
 - prompt: no requirement on dimuon mass
 - displaced: looser cuts on muon p and pt

- dark matter might interact via a new dark force
- a massive dark photon A' could kinetically mix with the ordinary photon
 - same production and decay kinematics of an off-shell photon with same mass
 - normalising to γ* allows to get rid of most of the systematics

prompt search 2m_µ < m_{A'} < 70 GeV

displaced search 214 < m_{A'} < 350 MeV

Dark Photon: Long Lived

Phys. Rev. Lett. 120, 061801 (2018) CERN-LHCb-DP-2018-002

- scan of m(μμ)
- bins of $\tau(A')$ and decay fit χ^2
- fit to the mass distribution to get long-lived A' signal yield

main backgrounds:

- photon conversions in VELO material
 - 🔶 material map
- 2 semileptonic b hadrons decays
 - isolation BDTs (from $B_s \rightarrow \mu\mu$)
- double misID $K_s \rightarrow \pi\pi$ decays modelled from PID sideband

Dark Photon: Results

Turbo

Elena Dall'Occo

 $m(K^-\pi^+)$ [MeV/ 2^2

1900

1850

1800

Phys.Rev. D94 (2016) no.11, 113007

constraints on the BR reinterpreted as limits on N mixing angle

