

Searches for unconventional signatures with the ATLAS detector at 13 TeV

LHCP2018
Bologna, Italy, June 2018

R. Kopeliansky, Indiana University
On behalf of the ATLAS collaboration

Outling

· Unconventional-ism

- · Definition
- · Question of stableness
- · Search requirements

· Searches

- · ATLAS Unconventional Signature Searches
- · Displacement-ness
- · Displaced jets in the calorimeter
- · Displaced lepton-jets
- · Summary

Unconventional-ism

R. Kopeliansky - LHCP2018

Definition of Unconventional-ism

Unconventional final-state usually refers to unique detector signatures

- · Mostly refers to physics beyond the standard model (BSM)
- · Many scenarios include new particles with relatively long life-time, enabling direct measurements
- · Final states can include BSM particles
- · The new particle interactions with the detector can differ from interactions involving SM particles
 - Can be massive and therefore are expected to travel at low velocities $(\beta < 1)$
 - If electrically charged, the new particle is expected to be highly ionizing $(\frac{dE}{dx} > \frac{dE}{dx}_{MIP})$

Question of Stableness

- · A particle is considered as long-lived (LLP) if it has a long-enough lifetime to be measured directly by the detector
- · Two types of long-lived particles:
 - · Meta-stable
 - Decays inside the detector volume
 - The decay location is usually unknown and hence a range of lifetimes will be studied
 - · Stable
 - pass through the detector without decaying
- · <u>Detector signature:</u>
 - · Electrically charged LLPs will leave signal in all detector stations
 - If neutral, depending on the LLP lifetime, either large reconstructed E_T^{miss} or unusual vertex locations will appear
 - · Strongly interacting LLPs might flip their electric charge while interacting with the detector medium
 - · In most cases the background sources are cavern/instrumental noise and badly reconstructed objects

Search Requirements

Usually requires unconventional analysis methods

- · Detector-signature driven search
- · Standard triggers are not designed for unusual objects
- · Self-made object reconstructions is required
- · Requires non-standard analysis strategies and tools
 - · Custom made MC simulations
 - · Background estimation is usually data driven

Searches

R. Kopeliansky - LHCP2018

ATLAS Unconventional Signature Searches

[@] Many thanks to the talented artist: Emma Torro, University of Washington

Displacement-ness

'Displaced Vertices':

- · Some BSM models consider a possible production of a neutral metastable particle
- · Depending on the LLP's lifetime a decay is expected inside the detector
- · Signal 'appears' inside one of the detector stations
- · No trail leading to the Interaction-Point (IP) from the decay location, only decay products

Searches presented:

- · Displaced jets
- · Displaced Lepton-Jets (LJs)

Common:

- · Neutral LLP decays inside the detector
- · Background sources of multi-jet production, and Non-Collision Bkg (NCB)
 - NCB (Cosmic- μ and beam halo (Beam Induced Bkg (BIB)))
- · Public results based on data sample of ~3 fb-1 (2015)
- · Background estimation based on data-driven ABCD method with two discriminating variables

Displaced Jets in the Calorimeter – 1/3

Scenario

- · Hidden Sectors (HS) containing a new sector weakly coupled to the SM via a communicator particle
- · The HS particles may decay to SM particles via the communicator

- A simplified HS model in which the SM sector and hidden sector are connected via a heavy neutral boson Φ • The Φ decays to two long-lived neutral scalars $S: \Phi \to SS$ • The neutral scalar S decays to a pair of SM fermions: $S \to ff$

Detector signature

- · The neutral LLPs will decay in the hadronic calorimeter
- Results in a-typical jet (mainly $b\bar{b}$ -quarks):
 - · No tracks in the ID
 - · No energy deposit in the electromagnetic calorimeter
- · Final state of two displaced jets

Pisplaced Jets in the Calorimeter - 2/3

15-CONF-2076-70

Analysis Strategy

- · LLP decay products are less separated when the decay occurs in the HCal resulting in a narrow jet
 - High 'CaloRatio-jet' $(\frac{E_{HCal}}{E_{EM}})$
 - · No ID tracks
- · MC simulations:
 - Heavy boson: $m_{\Phi} = 400~GeV \rightarrow 1~TeV$
 - Neutral scalars: $m_S = 50 \rightarrow 400 \ GeV$
- · Trigger selection: signature-driven trigger: 'CalRatio'
- · Offline selection:
 - · BIB removal algorithm
 - Boosted Decision Tree (BDT) and p_T cuts:
 - $p_T > 150 \text{ GeV}, BDT > 2.0$
 - $p_T > 120 \ GeV, BDT > -0.2$

- · Background rejection:
 - BDT value should be within -3ns < t < 15ns
 - Rejection of soft NCB jets $p_T > 50~GeV$
 - $\Delta \emptyset(jet_1^{CaloRatio}, jet_2^{CaloRatio}) > 0.75 \ rad$
- · Background estimation using a data-driven ABCD method:
 - $\sum \Delta R_{min}$ (jet, tracks)
 - $-\sum BDT$

Pisplaced Jets in the Calorimeter – 3/3

Results

- The number of predicted background events (18.4±6.3(stat)±6.6(syst)) is within 1σ of the observed events (24)
- Limits were set on $\sigma \times BR$ of the signal as a function of the proper lifetime of the LLP:

	$m_s = 50 \; GeV$	$m_s = 100 \; GeV$	$m_s = 150 \; GeV$	$m_s = 400 \; GeV$
	Decay lengt	h range excluded	at 95% CL for $\sigma \times$	BR = 1 pb
$m_{\Phi} = 400 \; GeV$	(0.20, 2.4) m	(0.52, 4.6) m	_	_
$m_{\Phi} = 600 \; GeV$	(0.09, 2.7) m	_	(0.38, 8.2) m	_
$m_{\Phi} = 1 \text{ TeV}$	(0.05, 2.0) m		(0.14, 7.2) m	(0.78, 16) m

For $m_{\Phi} = 1$ TeV, a decay-length range of $0.05 m \rightarrow 16 m$ is excluded (assuming 1 pb Xsec and 100% BR)

Experiment	Experiment 8 TeV $c au$ (m)	
ATLAS	$0.14 \le c \tau \le 8.32$ Physics Letters B 743 (2015) 15-34 arXiv:1501.04020	$0.05 \le c\tau \le 16$
CMS	$0.01 \le c au \le 3.5$ Phys. Rev. D 91 (2015) 012007 arXiv: $\underline{1411.6530}$	-

Displaced Lepton-Jets (LJs) – 1/4

ATCAS_CONF_2076_043

Scenario

- · Light hidden photon Ya mixed kinetically with SM photon
- · Expected small mass and hence produced boosted and long-lived
- The γ_d lifetime depends on the kinetic mixing parameter
- At its lightest state the γ_d will decay to SM particles, mainly leptons & mesons

Two FRVZ models used as benchmarks:

In both the hidden sector is communicating with the SM sector through the Higgs portal:

The Higgs boson decays to a pair of hidden fermions fdz

the dark fermion f_{d2} decays to a y_d and a Hidden-Lightest-Stable-Particle f_{d1} (HLSP)

the dark fermion f_{d2} decays to a dark scalar s_{d1} and an HLSP then the s_{d1} decays to pairs of dark photons

Displaced Lepton-Jets (LJs) – 2/4

<u>Detector Signature</u>

- The γ_D s are expected to decay two LJs, produced back-to-back in the azimuthal plane
- LJs are defined and classified according to the muon/jet content found within a cone of opening: $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

Muons only - at least two muons, no jets

Muons + jet - at least two muons and only one jet

Jets only - no muons, jets only

Displaced Lepton-Jets (LJs) – 3/4

ATLAS_CONF_2076-042

Analysis Strategy

Searching for long-lived neutral particles decaying into collimated jets of light-leptons and mesons

· MC simulations:

- · 2 or 4 VD
- $m_{\gamma_D} = 0.4 \ GeV$
- $m_H = 125,800 \, GeV$
- · Trigger selection 'OR' combinations:
 - Narrow-scan scan for μ object in a narrow cone
 - Tri-muon MS only events with at least 3- μs with no ID info
 - CalRatio isolated jets with low energy deposition in the EMcal
- · Background rejection:

LJ type	Selection requirement	Requirement description
Type $0/1$	z_0 limits	an impact parameter $ z_0 $ < 280 mm for both muons of the LJ
Type $1/2$	jet timing $\Delta t_{\rm Calo}$	remove jets outside the \pm 4 ns time window
Type2	tile-gap scint.	max energy in tile-gap scintillators $\leq 10\%$ of the jet energy
Type2	EM fraction	EM fraction of the jet < 0.1
Type2	jet width	W < 0.058
Type2	JVT	JVT variable ≤ 0.56
Type2	BIB	use BIB tagging to remove fake jets from beam-halo muons
Type $0/1$	no-CB	all muons of the LJ to be non-combined ("no-CB")

· Offline selection:

- Two LJ objects passed the Bkg. Rejection
- ID-track isolation + $\Delta \phi$ between the two LJs
- · Background estimation using a data-driven ABCD method:
 - $\max \sum p_T \le 4.5 \; GeV$
 - $-|\Delta \phi|_{LI} \ge 0.628 \, rad$

Displaced Lepton-Jets (LJs) – 4/4

Results

- · Consistency between the observed data (285) and expected background (231±12(stat)±62(syst))
- Upper-limits were set on (non-)SM Higgs decays to LJs:

For SM ggf H production Xsec with $m_{\gamma_D} = 0.4 \ GeV$

The BR was found to be lower than 10% for H with $m_H=125~GeV$ decaying to γ_d

- $H \rightarrow 2\gamma_d + X$ for γ_d with $2.2 \text{ mm} \le c\tau \le 111.3 \text{ mm}$
- $H \rightarrow 4\gamma_d + X$ for γ_d with $3.8 \text{ mm} \leq c\tau \leq 163 \text{ mm}$

For production XSec $\sigma \times BR$ of 5.0pb with $m_H = 800$ GeV decaying to γ_d :

- $H \rightarrow 2\gamma_d + X$ for γ_d with $0.6 \text{ mm} \leq c\tau \leq 63 \text{ mm}$
- $H \rightarrow 4\gamma_d + X$ for γ_d with $0.8 \text{ mm} \le c\tau \le 186 \text{ mm}$

m_H (GeV)	8 TeV	13 TeV
125	$14 \le c\tau \le 140$ JHEP11(2014)088 arXiv: 1409.0746	$2.2 \le c\tau \le 163$
800	-	$0.6 \le c\tau \le 63$

Summary

- · Many BSM models predict unconventional detector signatures
 - Custom analysis techniques are designed & used to achieve sensitivity to these final-states
- · ATLAS Exotic meta-stable search results presented were based on 13 TeV data
 - · No evidence for the existence of new physics was found
 - · Higher limits were set at 95% CL on the new particles decay-length
- · Other unconventional signature searches are ongoing
 - · For some, results will be published already this summer
- LLP triggers are being updated/designed for phase-1/2 upgrade to address more scenarios (displaced ID vertices, MS-Only objects, slow-particles…)
 - · Improved technology that allows running more sophisticated algorithms

Backup

Displaced Lepton-Jets (LJs)

ATCAS_CONF_2076-042

· MC simulations:

Benchmark	$m_{ m H}$	$m_{\mathrm{f_{d}}_2}$	$m_{ m HLSP}$	$m_{\mathrm{s_{d_1}}}$	$m_{\gamma_{ m d}}$	$c au_{\gamma_{ m d}}$	Branching	Branching	Branching
model				_			Ratio	Ratio	Ratio
	[GeV]	[GeV]	[GeV]	[GeV]	[GeV]	[mm]	$\gamma_{ m d} ightarrow ee$	$\gamma_{ m d} ightarrow \mu \mu$	$\gamma_{ m d} ightarrow \pi\pi$
$2 \gamma_{\rm d}$	125	5.0	2.0	-	0.4	47.0	45%	45%	10%
$4 \gamma_{\rm d}$	125	5.0	2.0	2.0	0.4	82.40	45%	45%	10%
$2 \gamma_{\rm d}$	800	5.0	2.0	-	0.4	11.76	45%	45%	10%
$4 \gamma_{\rm d}$	800	5.0	2.0	2.0	0.4	21.04	45%	45%	10%

• Results of the ABCD Bkg. Est.:

Category	Observed events	Expected background
All events	285	$231 \pm 12 \text{ (stat)} \pm 62 \text{ (syst)}$
Type2-Type2 excluded	46	$31.8 \pm 3.8 \text{ (stat)} \pm 8.6 \text{ (syst)}$
Type2–Type2 only	239	$241 \pm 41(\mathrm{stat}) \pm 65(\mathrm{syst})$

· Expected number of LJ-pairs after full set of selection criteria:

Category	$m_{\rm H}=125~{ m GeV}$	$m_{\mathrm{H}} = 125 \; \mathrm{GeV}$	$m_{\rm H}=800~{\rm GeV}$	$m_{\rm H}=800~{\rm GeV}$
	Higgs $\rightarrow 2\gamma_{\rm d} + X$	$Higgs \rightarrow 4\gamma_d + X$	Higgs $\rightarrow 2\gamma_{\rm d} + X$	$Higgs \rightarrow 4\gamma_d + X$
All events	113 ± 2	96 ± 2	53.0 ± 0.6	112 ± 1
Type2–Type2 excluded	111 ± 2	96 ± 2	43.0 ± 0.5	109 ± 1
Type2-Type2	2.0 ± 0.5	0.34 ± 0.10	10.0 ± 0.3	3.2 ± 0.2

• Ranges of γ_d lifetime (ct) excluded at 95% CL:

FRVZ model	$m_{ m H}~({ m GeV})$	Excluded $c\tau$ [mm]
Higgs $\rightarrow 2\gamma_{\rm d} + X$	125	$2.2 \le c\tau \le 111.3$
Higgs $\rightarrow 4\gamma_{\rm d} + X$	800	$3.8 \le c\tau \le 163.0$
Higgs $\rightarrow 2\gamma_{\rm d} + X$	125	$0.6 \le c\tau \le 63$
Higgs $\rightarrow 4\gamma_{\rm d} + X$	800	$0.8 \le c\tau \le 186$

Displaced Jets in the Calorimeter

ATCAS_CONF_2076_703

• MC simulations:

m_{Φ} [GeV]	$m_{\rm s}~[{\rm GeV}]$	LF=5 m		LF=9 m	
m _Φ [Gev]	$m_{\rm s}$ [GeV]	$c\tau$ [m]	Events	$c\tau$ [m]	Events
400	50 100	0.700 1.46	400k 400k	1.26 2.64	200k 200k
600	50 150	0.520 1.72	400k 400k	0.960 3.14	200k 200k
1000	50 150 400	0.380 1.17 3.96	400k 400k 400k	0.670 2.11 7.20	200k 200k 200k

· Offline selection:

Requirement	Data main	SM multi-jets MC	$m_{\phi} = 600 \ GeV;$	Data BIB	Data cosmic rays
			$m_{\rm s}=150~GeV$		
Events passing the trigger	548600 ± 740	404000 ± 27000	25.7%	100%	100%
≥ 2 clean jets	421800 ± 650	197000 ± 19000	22.1%	38.3%	21%
$\mathrm{jet_{1,2}^{CalRatio}}$ clean	23860 ± 150	900 ± 440	7.21%	6.67%	7.28%
$\Delta \phi > 0.75$	17590 ± 130	600 ± 350	6.85%	0.86%	3.38%
-3 < time < 15	16180 ± 130	600 ± 350	6.84%	0.35%	1.10%
$H_{ m T}^{ m miss}/H_{ m T} < 0.3$	14880 ± 120	600 ± 350	6.09%	0.30%	0.25%
$\sum \Delta R_{\min} > 0.5$	9500 ± 97	500 ± 330	6.08%	0.14%	0.25%
$\overline{\text{BDT}}$ value(jet ₁ ^{CalRatio}) > 0.2	8190 ± 91	500 ± 330	5.95%	0.09%	0.25%
BDT value(jet ₂ ^{CalRatio}) > -0.2	4890 ± 70	300 ± 260	5.93%	0.06%	0.25%
$p_{\rm T,1} > 150 \; GeV$	330 ± 18	0 ± 0	5.31%	0.005%	0%
$p_{\rm T,2} > 120 \; GeV$	110 ± 10	0 ± 0	4.27%	0.001%	0%
region A:					
$\sum \Delta R_{\min} > 1.5$	60 ± 8.0	0 ± 0	3.73%	0%	0%
$\sum BDT > 0.15$	24 ± 4.9	0 ± 0	3.57%	0%	0%

· Estimated number of events in the Signal-Region using the ABCD method:

	Region	A	В	С	D	Estimated $A = BC/D$	
ı	SR: $p_{T,1} > 150 \text{ GeV}; p_{T,2} > 120 \text{ GeV}$:						
١	$\sum BDT$ boundary = 0.15	24	16	39	34	18.0 ± 6.3	
ı	$\overline{\text{VR}}: p_{\text{T},1} > 140 \text{ GeV}; 80 \text{ GeV} < p_{\text{T},2} < 120 \text{ GeV}:$						
ı	$\sum BDT$ boundary = 0.2	15	14	84	77	15.3 ± 4.7	
ı	$\sum BDT$ boundary = 0.15	42	38	57	53	40 ± 10	
ı	$\sum BDT$ boundary = 0.1	72	64	27	27	60 ± 19	