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•  Introduction: luminosity overview 
•  ATLAS/CMS luminosity strategy 
•  Absolute luminosity calibration   
•  Luminosity systematics 
•  Summary 
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Introduction 
Event rate R [events/s]: key parameter for experiments. For a physics process with 
cross-section σ, R is proportional to the instantaneous luminosity L : 

R		=	σ L
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Experiments MUST provide highly precise 
luminosity measurements: 
•  Instantaneous L -> online for machine 

monitoring: LHC performance and 
operation (lumi levelling, beam 
monitoring…). Needed precision: 3-5% or 
better 

•  Integrated L -> offline for physics: precise 
cross section measurements, SM test, new 
physics (theory often limited by PDF 
uncertainty, aim to have lower lumi 
uncertainty to better constrain PDFs’). 
Needed precision: below 2%, ideally 1% 

Achieved LHC uncertainty ≈2% 
Quite good but still dominant for some 
cross section measurements  



µ   = number of inelastic pp collisions per bunch crossing 

nb   = number of colliding bunch pairs 

fr   = LHC revolution frequency (11245 Hz) 

σinel  = total inelastic pp cross-section (~80 mb at 13 TeV) 

ε   = acceptance and efficiency of luminosity detector 

µvis  = number of visible (= detected) collisions per bunch crossing 

σvis  = visible cross-section = luminosity calibration constant 

Basics of luminosity measurement 

L = R
σ
=
µnb fr
σ inel

=
εµnb fr
εσ inel

=
µvisnb fr
σ vis

Each detector able to provide a quantity proportional to luminosity 
can be considered a luminosity monitor 
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Luminosity environment at LHC 
LHC 2017 running conditions: pp bunches separated by 25 ns, √s=13 TeV 

Bunch-by-bunch 
luminosity 

Bunch-integrated 
luminosity over fill 
(about 12 hours) 

Ø  Steps in luminosity determination and systematics assessment: 
§  Absolute scale from beam-separation scans: vdM method, complemented by the 

luminous-region evolution (aka beam-beam imaging scans) 
§  Evaluation of linearity over four orders of magnitude in luminosity	
§  Stability throughout the year → redundancy between luminometers 
§  All other source of systematics 
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μ≈40 

Fill 6677 - 2544 bunches 

twice LHC design 
luminosity 



ATLAS Run 2 luminosity monitors 
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Luminosity 
measurement using 
a Cherenkov 
Integrating Detector 
(LUCID)  

-	online and offline   
measurements  
- event/hit counting (aka zero-
counting, based on Poisson 
statistics) 

 

Event counting 

Online 
measurements 

Offline 
measurements 

Hit counting 

 

Hadronic  
Cal. (TILE) 

EM: 
- Forward 
Calorimeter (FCAL) 
- EndCap 
Calorimeter (EMEC) 

	
Particle flux algorithms  

+ Z counting 
(relative-L checks) 

+ Track counting 
(+ Vertex counting) 

ATLAS-preferred 
for Run 2: LUCID 



CMS Run 2 luminosity monitors 
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Hadron	Forward	
Calorimeter	(HF)	

HF 

HFOC: hit counting 
HFET: ET flow  

Pixel	Luminosity	
Telescope	(PLT)	

Event counting 

Fast	Beam	
Condition	Monitor	
(BCM1F)	

Hit counting 

Online measurements Offline measurements 

Muon	Drift	Tubes	(DT)	

Rate of muon tracklet 
trigger primitives 

2015/2016 based on: PCC 
2017 based on: HFET  
(complemented with: PCC) 

Silicon	Pixel	Detector	

Pixel Cluster 
Counting (PCC) 



L =
nb frnp1np2
2πΣxΣy

vdM scan calibration: principle 

Ø  Visible interaction rate μvis measured as a function 
of beam separation δx(y) 

Ø  Visible rate calibrated to the reference luminosity 
computed from measured beam parameters 

                                                                                                   
 

Ø  Direct calibration of the visible cross  
section σvis for each luminosity detector/algorithm 

 
 
Ø  Key assumption: factorization of bunch proton 

density function 

L (�x, �y) = fx (�x) fy (�y)

⌃x

µvis
peak	

σ vis =
R
L
=
µ frnb
L

= µvis
peak 2πΣxΣy

np1np2

Beam overlap width: integral under the 
scan curve/peak (σ if Gaussian) 
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Dominant uncertainties in vdM calibration 
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Non-factorization correction: 
§  Signature of non-factorization effects: 

dependence of vertical convolved beam 
size and/or vertical luminous width on 
horizontal separation (and vice-versa) 

§  Combination of factorizable vdM 
analysis with non-factorization 
correction from luminous-region data 
§  CMS in 2017:   0.8 ± 0.8 % 
§  ATLAS in 2017: 0.2 ± 0.2 % 
 

Scan-to-scan reproducibility of vdM 
calibration: 

§  CMS in 2017: ± 0.9 % 
§  ATLAS in 2017: ± 1.2 % 

NB: somewhat different recipes to evaluate this and  
some others uncertainties between the two collaborations 
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Calibration transfer: vdM to physics 
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Ø  ATLAS: 
§  Non-linearity correction from Track-

based L  
§  typical correction @ µ = 50                 

for LUCID hit counting in 2017: - 9% 
§  Systematic uncertainty evaluated by 

comparing with calorimeter-based 
correction in 2017: ±1.3%  

Shift in luminometer response between vdM (low L, low µ, few bunches far apart)  
and physics (high L, high µ, more than 2000 bunches in trains of 25 ns) 
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ATLAS Ref.: 
https://twiki.cern.ch/twiki/bin/
viewauth/Atlas/LuminosityForPhysics 
CMS Ref.: CMS-PAS-LUM-17-004 

Ø  CMS:  
§  Non-linearity correction from emittance-scan analysis (i.e. 

"absolute") 
§  typical correction @ µ = 50 for HFET in 2017: 1.5 % 

§  Systematic uncertainty evaluated by comparing residual 
relative non-linearity of luminometers on 2017: ±1.5% 

	



CMS emittance scans 
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Ø  Short vdM-like scans performed at the 
beginning and at the end of LHC fills in 
standard physics conditions  
•  Beams scanned in X and Y planes in 7/9 

displacement steps of 10s/point 
•  Lower level of precision than vdM scan due 

to: limited scanning range (insensitive to 
tails), possible non factorization biases 
(different bunch-production mode), beam 
dynamics effects (e.g. beam-beam effects) 

•  useful for relative measurements  
Ø  Very powerful tool to assess linearity and 
stability effects: 

•  Used to determine non-linearity corrections 
for HF, BCM1F and PLT  

Ø  Used for LHC diagnostics and for cross check 
of luminosity performance  

•  Correct for ageing in HF   
•  Correct for PLT efficiency drifts 
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Stability during data taking 
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CMS-PAS-LUM-17-004 

Ra
tio

	H
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T/
PC

C	

σsyst = 0.5% 
(RMS) 

σsyst=1.3% 
(envelope) 

Stability uncertainty:  
- ATLAS: from comparison of all available relative-luminosity monitors over the entire 
data-taking period, including Z-counting (not used to asses uncertainty) ±1.3% in 2017 
- CMS: RMS of HFET/PCC ratio (providing 99.4% of 2017 luminosity) ±0.5% in 2017 

CAVEAT: different way to assess the stability uncertainty! 

Under approval 



ATLAS/CMS uncertainties overview 
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ATLAS Systematics: vdM calibration 

Bunch-
charge 
product 
 
 
 
Beam 
conditions 
 
 
 
 
 
 
Instrumental 
effects 

Beam current calibration 
Ghost and satellites 
 
Orbit-drift correction  
Beam position jitter 
Emittance growth correction 
Scan-to-scan reproducibility 1.2% 
Bunch-to-bunch consistency 
Fit model 
Non-factorization effects 
Beam-beam effects 
Cross-detector consistency 
 
Background subtraction 
Length scale calibration 
ID length scale                    0.6% 

CMS Systematics:vdM calibration 

Bunch-
charge 
product 
 
 
 
Beam 
conditions 
 
 
 
 
 
 
Instrumental 
effects 

Beam current calibration 
Ghost and satellites 
 
Orbit-drift correction  
- 
- 
Scan-to-scan reproducibility 0.9% 
Bunch-to-bunch consistency 
- 
Non-factorization effects     0.8% 
Beam-beam effects             0.6%       
Cross-detector consistency   0.6% 
 
- 
Length scale calibration 
- 

CMS-PAS-LUM-17-004 https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LuminosityForPhysics 



ATLAS/CMS uncertainties overview 
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ATLAS Systematics: L monitoring CMS Systematics: L monitoring 

Monitoring Internal stability           0.5% 
Linearity                      1.5% 
Afterglow 
Afterpulses 
Dead time                   0.5% 

Total systematic uncertainty 
for 2017 (preliminary):  

ATLAS: 2.4%  
CMS: 2.3%  

CMS-PAS-LUM-17-004 

Monitoring Internal stability           1.3% 
Linearity                      1.3% 
Afterglow 
- 
- 

https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LuminosityForPhysics 



Luminosity performance summary 

ATLAS CMS ATLAS CMS ATLAS CMS ATLAS CMS 

Running	
period 

2012	
pp 

2012	
pp 

2015	
pp 

2015	
pp 

2016	
pp 

2016	
pp 

2017 
pp 

2017 
pp 

√s	[TeV] 8 8 13 13 13 13 13 13 

σL	/L	[%] 1.9 2.6 2.1 2.3 2.2 2.5 2.4 2.3 
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Year c.m.s 
(TeV) 

β* (m) L_Inst  
(1030c-2s-1) 

Tot Sys  
Unc. (%) 

vdM  
Sys. 

Unc.(%) 

Reference 
detector 

2011 7 90 5*10-3 2.3 1.5 ATLAS- BCM 

2012 8 90 5*10-2 1.5 1.2 ATLAS - BCM 

2012 8 1000 0.8*10-3 1.4 1.2 ATLAS - Lucid 

High luminosity i.e. Standard data taking 

Low luminosity i.e. ALFA runs for total pp cross section 

preliminary 

ATLAS Ref: https://twiki.cern.ch/twiki/bin/viewauth/Atlas/LuminosityForPhysics CMS Ref: CMS-PAS-LUM-17-004/17-004/15-001/13-001 



Conclusions 
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v Luminosity determination is a key parameter for all physics analyses and a 
challenging measurement at hadron colliders 
 - accelerator issues: reproducibility of beam conditions, accounting for beam 
 dynamics (non factorization biases, beam-beam corrections, ghosts & satellites) 
 - detector issues: linearity of luminosity measurements vs pile-up and 
 number of filled bunches, stability over different data taking conditions, 
 ageing…   

 
v Redundancy of luminometers crucial for cross check of performances and 

systematics assessment: typical total systematics around 2-2.5%! 
 
v Z-counting for relative-luminosity monitoring: highly valuable! (validate non-

linearity corrections, confirm long-term consistency estimates) 
 
v Luminosity project at LHC great success over all Run 1 and Run 2 data taking 

 è precise test of Standard Model and search for new physics 
 
v Future perspective (LHC Phase II): expected to be even harder! 



Back up 
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Luminosity algorithms 

•  Event- (or zero-) counting algorithms: 
–  Based on Poisson statistics: count of events with at least one hit 
 
 
–  If μ too large à “zero starvation” or “saturation” 

•  Hit-counting algorithms: 
–  Count of total hits in a given BX 
–  based on Poisson statistics but saturation at higher μ 

•  Track- (& vertex-) counting algorithms: 
–  conceptually similar to hit-counting. Examples: ATLAS. 

•  Particle-counting algorithms (summed over all bunches) 
–  Examples in ATLAS: current in hadronic-calorimeter photomultipliers or charge 

measurements (LUCID).	

POR =
NOR
Norbits

=1− e−µεOR ⇒ µ = −ln(1−
NOR
Norbits

)

Now:		ATLAS:	#	LUCID	hits.	CMS:	#	pixel	clusters.	
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Lumi from Detector type Data flow Name Lumi Algo 

ATLAS P-CVD diamond pads Bunch-by-
bunch (bbb) 

BCM Event counting 

Quartz Cherenkov tubes bbb LUCID Event counting 
Hit counting 

Si strip + pixel tracker: #vertices bbb “Vtx” Vtx counting 

Si strip + pixel tracker: #tracks bbb “Trks” Trks counting 

Fwd LAr / E.M. EndCap calo: 
gap currents 

Bunch-
averaged (ba) 

FCal 
 

Particle flux 

TILE calorimeter ba TILE Particle flux 

Pixelated radiation monitor ba TPX Hit counting 

CMS Pixel trk: #clusters bbb PCC Hit counting 

Fwd Fe/quartz calo bbb HFET E_T flow (analog) 

Fwd Fe/quartz calo. bbb HFOC Hit counting 

Pixel telescope bbb PLT Hit counting 

Fast Beam Conditions Monitor bbb BCM1f Trk segment counting 

Muon drift tube ba DT Rate counting 



ATLAS/CMS luminosity ratio 

20	

q  Significant (~ 10%) ATLAS-CMS L difference across 2016 

 
 

 
v Largest contribution:  emittancex > emittancey , coupled with                                             

horizontal (x) crossing in CMS vs. vertical (y) crossing in ATLAS 
v Analysis complicated by residual μ- or time-dependence of reported L, that 

could be different in the two experiments 
Ø most trusted offline algorithms: track-cntg (ATLAS), pixel-cluster cntg (CMS) 
à dedicated experiment: crossing-angle scan 

1	Mar	2018	
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Vdm Scan calibration: difficulties 

Central role of beam dynamics -> two beam-beam effects:  
1)  beam-beam deflection: if bunches not exactly centred è angular kick due 

to e.m repulsion;  
2)  dynamic β: mutual (de)focusing of the two colliding bunches; 
Effect: < 0.5% PbPb, 1 - 2% for 7/8/13 TeV pp and around 4% for 5 TeV pp. 

Scan curve distorted by interactions of the two beams during a scan. 
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ATLAS reference luminometer: 
LUCID-2 

17	meters	from	IP	–	13	
cm	from	beam-line	
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ATLAS Luminosity performance summary 

Year c.m. 
energy 
(TeV) 

Mu 
max 

L_max 
(1033 

cm-2s-1) 

L_int  
(fb-1) 

NBCID Dt  
(ns) 

Tot Sys  
Unc. 
(%) 

vdM  
Sys. Unc. 

(%) 

Reference 
Detector 
(online & 
offline) 

2010 7 5 0.2 0.047 348 150 3.5 3.4 LUCID-I 

2011 7 20 3.6 5.5 1331 50 1.8 1.5 BCM 

2012 8 40 7.7 22.7 1368 50 1.9 1.2 BCM 

2015 13 28 5 4.2 2232 25 2.1 1.7 LUCID-2 

2016 13 45 14 38.5 2208 25 2.2 1.2 LUCID-2 

2017 13 80 20 40 2544 25 2.4 ongoing LUCID-2 

Year c.m. 
energy 
(TeV) 

β* (m) L_Inst  
(1030c-2s-1) 

L_Int 
(μb-1) 

Tot Sys  
Unc. 
(%) 

vdM  
Sys. 

Unc.(%) 

Reference 
detector 

2011 7 90 5*10-3 80 2.3 1.5 BCM 

2012 8 90 5*10-2 500 1.5 1.2 BCM 

2012 8 1000 0.8*10-3 22 1.4 1.2 LUCID 



CMS: PLT 
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CMS: BCM1F 
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EYETS 16/17 



CMS: PCC 
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CMS: HF 
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CMS: summary of 2017 uncertainties 
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CMS: Non factorization evidence 
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ATLAS: Non factorization evidence 
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http://atlas.web.cern.ch/Atlas/
GROUPS/PHYSICS/PLOTS/
LUMI-2017-001/ 



ATLAS: Calibration transfer 
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http://atlas.web.cern.ch/Atlas/
GROUPS/PHYSICS/PLOTS/
LUMI-2017-001/ 



HL-LHC: ATLAS  
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HL-LHC: ATLAS  
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HL-LHC: ATLAS from CMS experience  
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CMS: special 
read out of 
Inner Tracker 



HL-LHC: CMS  
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HL-LHC: CMS  
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HL-LHC: CMS  
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HL-LHC: CMS  
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ATLAS Z-counting 
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 The invariant mass distribution of the muon pairs of the 240,000 Z ->mumu   boson events 
selecting two muons with pT> 27  GeV, pseudorapidity < 2.4  and 66 < m(mumu) < 116  GeV. 
The statistical errors are smaller than the symbol size. 
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ATLAS Z-counting 
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ATLAS Z-counting 
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ATLAS/CMS Z-counting ratio 
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https://lpc.web.cern.ch/cgi-bin/plots.py 

Preliminary 



•  Single beam profiles are parameterised by fitting the beam-separation 
dependence of the luminosity & of the beamspot displacement and width 
during a vdM scan.                                                                                    
This allows to: 
➜  estimate the true  

luminosity (i.e. unbiased by  
non-factorisation effects) 

➜  estimate correction for 
non-factorisation, R,  with an 
associated uncertainty 

•  The [ATLAS/ALICE] procedure above is closely related                                          
to the “beam-beam imaging” scans [pioneered by                                                  
LHCb & now established method in CMS] in which one  

     beam is scanned transversely as a probe across the                                
other. 

Non-factorisation correction procedure 

43	
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L (�x, �y) = fx (�x) fy (�y)

R =
L not assuming factorisation
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Non-factorization correction: beam-beam imaging 

•  Principle: use one beam (~ wire) to probe the other 
–  keep witness beam (B1) stationary; scan probe beam 

(B2) across it in x, then in y; repeat with B1 ßà B2 
•  measure 2-d distribution of reco’d evt vertices at each step: 

Nvtx(x, y) ={rwitness (x,y) x  rprobe (x,y)}  (X)  Rvtx position (x,y)  
(see ArXiv_1603.0356 [hep-ex]) 

–  extract single-beam parameters of B1 & B2 from fit to 
2-d vertex distributions in the 4 scans (B1/ B2, x/y) 

–  closely related to the ATLAS & ALICE luminous-region 
evolution method (but uses only transverse info, not L/z)  

•  common key issue: vertex-position resolution Rvtx position 
•  pros & cons of the 2 approaches to be clarified 
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Non-factorization correction: beam-beam imaging  

Example	of	pull	distributions	of	the	fitted	single-beam	model	of	the	single-gaussian	
(factorizable,	left)	and	double-gaussian	(non-factorizable,	right)	type	to	the	vertex	distribution	

accumulated	during	scan	Y3	of	bunch	pair1631.	
(Caption	adapted	from	Fig.	11	of	CMS-PAS-LUM-2015-001)	

Pull	distribution	to	cumulative	event-vertex	distributions	for	2	single-beam	
models:	

factorizable																																	non-factorizable	
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