CP violation and related measurements with baryons at LHCb

Alex Pearce

on behalf of the LHCb collaboration

Friday 8th June 2018 LHCP 2018, Bologna, Italy

- The LHC offers a unique opportunity to study heavy flavour baryons
 - Large production cross-sections for a suite of states
- The LHCb experiment is particularly well-suited to studying them
 - Large production fraction in high-rapidity acceptance 2 < y < 5
 - High-precision tracking down to low momenta
 - Excellent particle identification
- Have established a broad experimental programme
 - Discovery: new ground states and excited states
 - Characterisation: Masses, widths, lifetimes of known states
 - Asymmetries: CP violation, P- and T-odd

- *CP* violation in Λ_b^0 and $\Xi_b^0 \to ph^-h^+h^-$ decays
- *CP* violation in $\Lambda_b^0 \rightarrow pK^-$ and $p\pi^-$ decays
- Baryon number violation in Ξ_b^0 oscillations
- CP violation in $\Lambda_c^+ \to p \pi^- \pi^+$ and $p K^- K^+$ decays

- *CP* violation in Λ_b^0 and $\Xi_b^0 \to ph^-h^+h^-$ decays
- *CP* violation in $\Lambda_b^0 \rightarrow pK^-$ and $p\pi^-$ decays
- Baryon number violation in Ξ_b^0 oscillations
- CP violation in $\Lambda_c^+ \to p \pi^- \pi^+$ and $p K^- K^+$ decays

Further interesting charm baryon results

- Properties of the Ξ_{cc}^{++}
- Ω_c^0 lifetime
- Search for $\Lambda_c^+ o p \mu^- \mu^+$

See Marianna's talk, up next!

CP violation in Λ^0_b and $\Xi^0_b ightarrow ph^-h^+h^-$ decays

- LHCb found 3.3 σ evidence for CPV in $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ decays last year¹
 - Also searched in $\Lambda^0_b o p \pi^- K^+ K^-$
- Now perform similar measurements with other $X^0_b
 ightarrow ph^-h^+h^-$ decays

•
$$\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$$
 and $pK^-K^+K^-$
• $\Xi_b^0 \rightarrow pK^-K^+\pi^-$

• Measure integrated asymmetries and in phase space bins using triple products

$$C_{\widehat{T}} = \vec{p}_p \cdot (\vec{p}_{h_1} \times \vec{p}_{h_2})$$

¹Nature Physics volume **13**, pages 391–396 (2017)

CP violation in Λ^0_b and $\Xi^0_b ightarrow ph^-h^+h^-$ decays

- LHCb found 3.3 σ evidence for CPV in $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ decays last year¹
 - Also searched in $\Lambda^0_b o p \pi^- K^+ K^-$
- Now perform similar measurements with other $X^0_b
 ightarrow ph^-h^+h^-$ decays

•
$$\Lambda_b^0 \to pK^-\pi^+\pi^-$$
 and $pK^-K^+K^-$
• $\Xi_b^0 \to pK^-K^+\pi^-$

• Measure integrated asymmetries and in phase space bins using triple products

$$C_{\widehat{T}} = \vec{p}_p \cdot (\vec{p}_{h_1} \times \vec{p}_{h_2})$$

$$A_{\widehat{T}} = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}$$

¹Nature Physics volume **13**, pages 391–396 (2017)

CP violation in Λ^0_b and $\Xi^0_b ightarrow ph^-h^+h^-$ decays

- LHCb found 3.3 σ evidence for CPV in $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ decays last year^1
 - Also searched in $\Lambda^0_b o p \pi^- K^+ K^-$
- Now perform similar measurements with other $X^0_b
 ightarrow ph^-h^+h^-$ decays

•
$$\Lambda_b^0 \to pK^-\pi^+\pi^-$$
 and $pK^-K^+K^-$
• $\Xi_b^0 \to pK^-K^+\pi^-$

• Measure integrated asymmetries and in phase space bins using triple products

$$C_{\widehat{T}}=\vec{p}_{p}\cdot\left(\vec{p}_{h_{1}}\times\vec{p}_{h_{2}}\right)$$

$$A_{\widehat{T}} = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}$$

$$a_P^{\widehat{T}\text{-odd}} = \frac{1}{2}(A_{\widehat{T}} + \overline{A}_{\widehat{T}}), \qquad a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2}(A_{\widehat{T}} - \overline{A}_{\widehat{T}})$$

¹Nature Physics volume **13**, pages 391–396 (2017)

- Reconstruct and select $X^0_b
 ightarrow p K^- h^+ h^-$ with 3.0 fb⁻¹ of data
- Study efficiencies with $\Lambda_b^{0} \to \Lambda_c^+ \pi^+$, $\Lambda_c^+ \to p K^- \pi^+$ decays
- Split samples by proton charge and $C_{\widehat{T}}/\overline{C}_{\widehat{T}}$ sign

- Reconstruct and select $X^0_b
 ightarrow p K^- h^+ h^-$ with 3.0 fb $^{-1}$ of data
- Study efficiencies with $\Lambda_b^0 \to \Lambda_c^+ \pi^+$, $\Lambda_c^+ \to p K^- \pi^+$ decays
- Split samples by proton charge and $C_{\widehat{T}}/\overline{C}_{\widehat{T}}$ sign

arXiv:1805.03941

- Reconstruct and select $X^0_b
 ightarrow p K^- h^+ h^-$ with 3.0 fb $^{-1}$ of data
- Study efficiencies with $\Lambda_b^0 \to \Lambda_c^+ \pi^+$, $\Lambda_c^+ \to p K^- \pi^+$ decays
- Split samples by proton charge and $C_{\widehat{T}}/\overline{C}_{\widehat{T}}$ sign

_

• Measure integrated asymmetries for all modes

$$\begin{array}{cccc} & \Lambda_b^0 \to p K^- \pi^+ \pi^- & \Lambda_b^0 \to p K^- K^+ K^- & \Xi_b^0 \to p K^- K^- \pi^+ \\ \hline a_P^{\widehat{T} \text{-odd}} & (\%) & -0.60 \pm 0.84 \pm 0.31 & -1.56 \pm 1.51 \pm 0.32 & -3.04 \pm 5.19 \pm 0.36 \\ a_{CP}^{\widehat{T} \text{-odd}} & (\%) & -0.81 \pm 0.84 \pm 0.31 & 1.12 \pm 1.51 \pm 0.32 & -3.58 \pm 5.19 \pm 0.36 \end{array}$$

• Measure integrated asymmetries for all modes

$$\begin{array}{cccc} & \Lambda_b^0 \to p K^- \pi^+ \pi^- & \Lambda_b^0 \to p K^- K^+ K^- & \Xi_b^0 \to p K^- K^- \pi^+ \\ \hline a_P^{\widehat{T}\text{-odd}} & (\%) & -0.60 \pm 0.84 \pm 0.31 & -1.56 \pm 1.51 \pm 0.32 & -3.04 \pm 5.19 \pm 0.36 \\ \hline a_{CP}^{\widehat{T}\text{-odd}} & (\%) & -0.81 \pm 0.84 \pm 0.31 & 1.12 \pm 1.51 \pm 0.32 & -3.58 \pm 5.19 \pm 0.36 \\ \hline \end{array}$$

• Also measure asymmetries in phase space bins for Λ_b^0 samples

•
$$\Lambda_b^0 \to p K^- \pi^+ \pi^-$$
 (left), $\Lambda_b^0 \to p K^- K^+ K^-$ (right)

- Two-body charmless Λ_b^0 decays predicted to exhibit CPV at $\sim 6\,\%$ to $\sim 30\,\%$ level

$$A_{CP}(\Lambda_b^0 \to ph) = \frac{\Gamma(\Lambda_b^0 \to ph^-) - \Gamma(\overline{\Lambda}_b^0 \to \overline{p}h^+)}{\Gamma(\Lambda_b^0 \to ph^-) + \Gamma(\overline{\Lambda}_b^0 \to \overline{p}h^+)}$$

- Most recent measurements are from CDF, consistent with zero, $\sim 7\,\%$ precision
- Challenging due to contributions from production and detection asymmetries
- Can control production asymmetry in the difference
 - May be particularly sensitive if U-spin transformation flips CP sign

$$\Delta A_{CP}(\Lambda_b^0 o ph) = A_{CP}(\Lambda_b^0 o p\pi) - A_{CP}(\Lambda_b^0 o pK)$$

- Reconstruct $\Lambda_b^0 \to h^+ h^-$ vertex highly displaced from the PV with large p_{T}
- Form orthogonal sub-samples for all PID hypothesis ($h \in p, \pi, K$)
- All eight spectra fitted simultaneously to determine mis-ID contributions to signal samples

- Reconstruct $\Lambda^0_b o h^+ h^-$ vertex highly displaced from the PV with large p_{T}
- Form orthogonal sub-samples for all PID hypothesis ($h \in p, \pi, K$)
- All eight spectra fitted simultaneously to determine mis-ID contributions to signal samples

Results

• Combine proton-charge-dependent yields to measure individual asymmetries

$$\begin{aligned} A_{CP}(\Lambda_b^0 \to pK^-) &= (-1.9 \pm 1.3 \, (\text{stat.}) \pm 1.7 \, (\text{syst.})) \,\%, \\ A_{CP}(\Lambda_b^0 \to p\pi^-) &= (-3.5 \pm 1.7 \, (\text{stat.}) \pm 1.8 \, (\text{syst.})) \,\% \end{aligned}$$

- Dominant systematic uncertainty from knowledge of Λ_b^0 production asymmetry
- Measure difference, remaining contributions from pion and kaon detection asymmetries

$$egin{aligned} \Delta A_{C\!P} &= A_{C\!P}(\Lambda_b^0 o p K^-) - A_{C\!P}(\Lambda_b^0 o p \pi^-) \ &= (1.5 \pm 2.1 \, (ext{stat.}) \pm 1.1 \, (ext{syst.})) \, \% \end{aligned}$$

• Improvement in precision close to a factor of 4

- Baryon number violation is one of the Sakharov conditions
- Six-fermion operators allowed in some leptoquark and *R*-parity violating models
 - NP models strongly constrained by proton decay measurements
 - Such operators strongly suppressed in proton decay, however, requiring two FCNCs
- Experimental signatures require presence of all three fermion generations
- What about Ξ_b^0 (*usb*)?

- Baryon number violation is one of the Sakharov conditions
- Six-fermion operators allowed in some leptoquark and *R*-parity violating models
 - NP models strongly constrained by proton decay measurements
 - Such operators strongly suppressed in proton decay, however, requiring two FCNCs
- Experimental signatures require presence of all three fermion generations
- What about Ξ_b^0 (usb)?

- LHCb discovered the $\Xi_b^{\prime-}$ and Ξ_b^{*-} in 2014²
- Can use the $\Xi_b^{\prime,*-} \to \Xi_b^0 \pi^-$ chain to tag the Ξ_b^0 flavour at production
- Define opposite sign $(p+\pi^-)$ and same sign $(\overline{p}+\pi^-)$ samples

²Phys. Rev. Lett. **114** (2015) 062004

- Measure OS yields in bins of Ξ_b^0 decay time
- Constrain SS models
 - Signal model mean and width from integrated OS fit
 - Background distribution from sidebands outside $\Xi_b^{\prime-}$ and Ξ_b^{*-} signal regions
- Expected SS yields then completely determined by mixing freqency $\boldsymbol{\omega}$
- Form a likelihood $L(\omega)$ and find best fit value in data $L(\hat{\omega})$, compare with L(0)

Method and results

- Measure OS yields in bins of Ξ_b^0 decay time
- Constrain SS models
 - Signal model mean and width from integrated OS fit
 - Background distribution from sidebands outside $\Xi_b^{\prime-}$ and Ξ_b^{*-} signal regions
- Expected SS yields then completely determined by mixing freqency $\boldsymbol{\omega}$
- Form a likelihood $L(\omega)$ and find best fit value in data $L(\hat{\omega})$, compare with L(0)

- Find $\hat{\omega} = 0$
- Use pseudo-experiments to set limit

 $\omega < 0.08\,\mathrm{ps}^{-1}$ @ 95 % CL

CP violation in $\Lambda_c^+ \rightarrow ph^-h^+$ decays

• Search for direct CPV in $\Lambda_c^+ \to f$ decays, $A_{CP}(pK^-K^+)$ and $A_{CP}(p\pi^-\pi^+)$

$$\Delta A_{CP} = A_{\text{Raw}}(pK^-K^+) - A_{\text{Raw}}(p\pi^-\pi^+)$$
$$\approx A_{CP}(pK^-K^+) - A_{CP}(p\pi^-\pi^+)$$

- To reduce large prompt backgrounds, reconstruct $\Lambda^0_b o \Lambda^+_c \mu^- X$
- Using $3.0 \, \text{fb}^{-1}$ of Run 1 data

CP violation in $\Lambda_c^+ \rightarrow ph^-h^+$ decays

• Search for direct CPV in $\Lambda_c^+ \to f$ decays, $A_{CP}(pK^-K^+)$ and $A_{CP}(p\pi^-\pi^+)$

$$\Delta A_{CP} = A_{\mathsf{Raw}}(pK^-K^+) - A_{\mathsf{Raw}}(p\pi^-\pi^+) \ pprox A_{CP}(pK^-K^+) - A_{CP}(p\pi^-\pi^+)$$

- To reduce large prompt backgrounds, reconstruct $\Lambda^0_b \to \Lambda^+_c \mu^- X$
- Using $3.0 \, \text{fb}^{-1}$ of Run 1 data

- Hadron and muon detection asymmetries, and Λ_b^0 production asymmetry, mimic CPV
- Estimates available from data and MC, but generally with large uncertainties
- Weight $p\pi^{-}\pi^{+}$ kinematics to match $pK^{-}K^{+}$ to ensure cancellation in ΔA_{CP}
 - Show before (left) and after (right) weighting

- Hadron and muon detection asymmetries, and Λ_b^0 production asymmetry, mimic CPV
- Estimates available from data and MC, but generally with large uncertainties
- Weight $p\pi^{-}\pi^{+}$ kinematics to match $pK^{-}K^{+}$ to ensure cancellation in ΔA_{CP}
 - Show before (left) and after (right) weighting

• The $p\pi^-\pi^+$ asymmetry is alternated by this procedure

$$\Delta A_{C\!P}^{
m wgt} pprox A_{C\!P}(pK^-K^+) - A_{C\!P}^{
m wgt}(p\pi^-\pi^+)$$

- Efficiencies varies across the complex 5D $\Lambda_c^+ o ph^+h^-$ phase space
- CPV can also vary across this, so must correct for experimental effects

• Measure asymmetries separately for each data-taking condition

• Measure asymmetries separately for each data-taking condition

• Averages across all conditions

$$\begin{split} A_{\mathsf{Raw}}(pK^-K^+) &= (3.72 \pm 0.78\,(\text{stat.}))\,\% \\ A_{\mathsf{Raw}}^{\mathsf{wgt}}(p\pi^-\pi^+) &= (3.42 \pm 0.47\,(\text{stat.}))\,\% \\ \Delta A_{CP}^{\mathsf{wgt}} &= (0.30 \pm 0.91\,(\text{stat.}) \pm 0.61\,(\text{syst.}))\,\% \end{split}$$

- Baryons provide a rich laboratory within which to study QCD and CP violation
- LHCb has collected the world's largest samples of charm and beauty baryons
 - Have not discussed recent discoveries of ground states, Ξ_{cc}^{++} , and excited states, Ω_c^*
- Exploiting data to produce range of new and interesting results
- Plenty more to come with Run 2 data

Back up