

Spectroscopy results from LHCb

Roberta Cardinale on behalf of the LHCb collaboration

LHCP 2018 The Sixth Annual Large Hadron Collider Physics conference Bologna - 4-9 June 2018

Introduction

- Spectroscopy provides opportunities to study QCD predictions for models
- QCD predictions are quite reliable for standard hadrons (mesons and baryons)
- Many observed states still lack of interpretation: exotic states which are not fitting the standard picture
- LHCb physics program is devoted not only to precision measurements in *b*, *c* sectors but also to spectroscopy
- LHCb has produced striking results in the spectroscopy sector

Ξ_{cc} system

- Doubly charmed baryons predicted by quark model
- Theoretical predictions of Ξ_{cc}^{++} mass are between 3.5-3.7 GeV/c² [PRD70 (2004) 094004, PRD73 (2006) 094022, PRD78 (2008) 094007, EPJA37 (2008) 217, E2PJA45 (2010) 267,...] close to Ξ_{cc}^{+-}
- Different theoretical predictions are available also for the lifetime showing a large ambiguity: 150 - 1550 fs [PRD60 (1999) 014007, EPJC9(1999) 213, PRD66(2002) 014007, PRD90 (2014) 094007, ...]
- Ξ⁺_{cc} state observed by SELEX experiment [PRL 89 (2002) 112001, PRL97 (2006) 162001]:
 - $M = 3518.7 \pm 1.7 \,\mathrm{MeV}$
 - Unexpected short lifetime: $\tau < 33 \, {\rm fs}$ @ 90% CL
- Not confirmed by Focus [Nucl.Phys.Proc.Suppl 115 (2003)33], BaBar [PRD 74 (2006) 011103], Belle [PRL 97(2006) 162001] nor LHCb [JHEP 12 (2013) 090]

Observation of Ξ_{cc}^{++} [PRL 119 (2017) 112001]

- Search in LHCb using $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^-$
- Data sample: $2.0 \, \text{fb}^{-1}$ at 8 TeV (2012) + $1.7 \, \text{fb}^{-1}$ at 13 TeV (2016)

- Highly significant peaks: 7.6 σ (2012), 12.9 σ (2016) Yields: 313 ± 33 (2016) and 113 ± 21 (2012)
- Mass measured with the 2016 sample:

 $m(\Xi_c^{++}) = 3621.40 \pm 0.72(stat) \pm 0.31(syst) \,\mathrm{MeV/c^2}$

consistent with theoretical range of predictions, not consistent with Ξ_{cc}^+ SELEX measurement (100 MeV above SELEX Ξ_{cc}^+ peaks)

Roberta Cardinale	LHCP 2018	4

Lifetime measurement [LHCB-PAPER-2018-19, PRELIMINARY]

- Measuring its lifetime is crucial to establish the weak nature of its decay and for comparison with theoretical predictions
- Using the $\Xi_c^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ decay relative to the control channel $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ (~ 1.7 fb⁻¹ 13 TeV)
- Unbinned maximum likelihood fit of the background-subtracted Ξ_{cc}^{++} decay time distribution

 Many studies of other E⁺⁺_{cc} decay modes and properties (production mechanism, ...) and search for other doubly-charmed baryon states

Studies of χ_c Dalitz decays [PRL 119 (2017) 22, 221801]

- Study of quarkonia to test QCD mechanism
- $\chi_{c(1,2)}$ states studied using radiative $\chi_{c(1,2)} \rightarrow J/\psi\gamma$ decays
- First observation of $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$ with $J/\psi \rightarrow \mu^+ \mu^-$ using Run1 $(1 + 2 \text{ fb}^{-1} \text{ at } 7 \text{ and} 8 \text{ TeV}) + \text{Run 2} (1.9 \text{ fb}^{-1} \text{ at } 13 \text{ TeV})$
- Event topology with 4 muons: clean signature!

Background subtracted dimuon mass distributions agree well with the theoretical expectation of photon-mediated amplitudes

 Measurements of \(\chi_{c1}\) and \(\chi_{c2}\) parameters are consistent with and have similar precision to current world averages

$$m(\chi_{c1}) = 3510.71 \pm 0.04 \pm 0.09 \text{ MeV}$$
$$m(\chi_{c2}) = 3556.10 \pm 0.06 \pm 0.11 \text{ MeV}$$
$$m(\chi_{c2}) - m(\chi_{c1}) = 45.39 \pm 0.07 \pm 0.03 \text{ MeV}$$

$$\Gamma(\chi_{c2}) = 2.10 \pm 0.20 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \,\text{MeV}$$

A new Ξ_b^{**-} state! [PAPER-2018-013 arXiv:1805.09418]

- LHCb has a unique capability to search for excited states of beauty hadrons
- Already a number have been discovered $(\Lambda_b(5912)^0, \Lambda_b(5920)^0, \Sigma_b^{*\pm}, \Xi_b'(5935)^-, \Xi_b^*(5955)^-$ and $\Xi_b(5945)^0)$
- Dataset: 1.0 fb^{-1} at $7 \text{ TeV} + 2.0 \text{ fb}^{-1}$ at $8 \text{ TeV} + 1.5 \text{ fb}^{-1}$ at 13 TeV
- A new \(\mathcal{Z}_b^{**-}\) state seen in both fully hadronic and semileptonic (SL) decays
 - Hadronic $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ with resolution $2 \,\mathrm{MeV}, \ 7.9\sigma$
 - SL $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$ with resolution 18 MeV, $\times 15$ yield, 25σ

• SL
$$\Xi_b^0 \to \Lambda_c^+ \mu^- X$$
, 9.2 σ

A new Ξ_b^{**-} state! [PAPER-2018-013 arXiv:1805.09418]

• With hadronic mode:

$$\begin{split} m_{\Xi_b(6227)^-} &- m_{A_b^0} = 607.3 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \,\text{MeV}/c^2, \\ \Gamma_{\Xi_b(6227)^-} &= 18.1 \pm 5.4 \,(\text{stat}) \pm 1.8 \,(\text{syst}) \,\text{MeV}/c^2, \\ m_{\Xi_b(6227)^-} &= 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (A_b^0) \,\text{MeV}/c^2, \end{split}$$

• Production ratios are also measured with SL modes

Quantity $[10^{-3}]$	$7+8{ m TeV}$	$13{ m TeV}$
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Lambda_b^0})\mathcal{B}(\Xi_b^{**-}\to\Lambda_b^0K^-)$	$3.0\pm0.3\pm0.4$	$3.4\pm0.3\pm0.4$
$(\sigma_{\Xi_b^{**-}}/\sigma_{\Xi_b^0})\mathcal{B}(\Xi_b^{**-}\to\Xi_b^0\pi^-)$	$47\pm10\pm7$	$22\pm 6\pm 3$

- Consistent with expectations of either a $\Xi_b(1P)$ and $\Xi_b(2S)$ states
- J^P not yet measured to distinguish between the states

Exotic spectroscopy

- The observation of states with properties inconsistent with pure $c\bar{c}$ and $b\bar{b}$ states raised the interest of the so-called exotic (non-standard) quarkonium states from both the theoretical and experimental point of view
- The nature and the internal structure of these states are still unclear (molecular/tightly bound)
- The observation of charmonium pentaquark states ($c\bar{c}uud$) by LHCb in $\Lambda_b \rightarrow J/\psi pK^-$ [PRL 115 (2015) 072001, PRL 117 (2016) 082002] and $\Lambda_b \rightarrow J/\psi p\pi^-$ [PRL 117 (2016) 082003] decay channels raises the interest of searches of other pentaquark states

Observation of $\Lambda_b o \chi_{c(1,2)} p K^-$ [PRL 119 (2017) 062001]

- The pentaquark P_c(4450)⁺ state has mass close to \(\chi_{c1}p\) threshold
- Test of the hypothesis of $P_c(4450)^+$ as a kinematic effect of the rescattering $\chi_{c1}p$ to $J/\psi p$
- If a kinematic effect, it should be absent in $\Lambda_b \rightarrow \chi_{c(1,2)} p K^-$ [PLB 751 (2015) 59, PRD 91 (2015) 071502 (R)]
- $3 \, \mathrm{fb}^{-1}$ at 7 and 8 TeV (Run 1)
- Reconstruct as $\chi_{c(1,2)} \rightarrow J/\psi\gamma$ with the $m(J/\psi\gamma)$ constrained to the $m(\chi_{c1})$: $\Lambda_b \rightarrow \chi_{c2}pK^-$ is displaced
- Observed: $\Lambda_b^0 \rightarrow \chi_{c1}pK (453 \pm 25 \text{ candidates, } 29\sigma) \text{ and } \Lambda_b^0 \rightarrow \chi_{c2}pK (285 \pm 23 \text{ candidates, } 17\sigma)$
- Measurement of the branching fractions

• Amplitude analysis will be performed after adding Run2 data!

Search for weakly decaying b-flavoured pentaquarks

[PRD 97 (2018) 032010]

- Search for pentaquark states containing a b (anti)quark, long-lived with a lifetime of the same order of other B-hadrons, decaying weakly
- Skyrme model: heavy quarks give tightly bound pentaquarks [PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362]
- ${\ensuremath{\bullet}}$ Using modes involving a J/ψ in the final state due to large efficiencies and reduced backgrounds

• Search for mass peaks below the corresponding strong decay threshold mass

Quark content	Decay mode	Search window
<i>Ē</i> duud	$P^+_{B^0 p} \rightarrow J/\psi K^+ \pi^- p$	4668-6220 MeV
būudd	$P^{-}_{\Lambda^0_{\ell}\pi^-} \rightarrow J/\psi K^-\pi^- p$	4668–5760 MeV
bduud	$P^+_{\Lambda^0_{}\pi^+} \rightarrow J/\psi K^-\pi^+ p$	4668–5760 MeV
<i>̄bsuud</i>	$P^{+^{o}}_{B^{0}_{s}p} \rightarrow J/\psi \phi p$	5055-6305 MeV

Search for weakly decaying b-flavoured pentaquarks

[PRD 97 (2018) 032010]

• Measurement of the production ratio with respect to $\Lambda_b^0 \rightarrow J/\psi p K^-$ measured by LHCb

Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant mass spectrum

[LHCb-PAPER-2018-027, preliminary]

- Search for a possible exotic meson state composed of two b and two \bar{b} quarks: $X_{bb\bar{b}\bar{b}}$
- Several predictions for the mass and width of an exotic X_{bbbb} state [PRD86 (2012) 034004, PLB773 (2017) 247, PRD95 (2017) 034011, EPJC77 (2017) 432, ...]
- It should have mass around $18.4\text{-}18.8\,{\rm GeV/c^2},$ below the $2m_{\eta_b}$ threshold, meaning that it can decay to $\Upsilon\ell^+\ell^-$
- Data sample: $6.0 \,\mathrm{fb}^{-1}$ at $\sqrt{s} = 7$, 8 and $13 \,\mathrm{TeV}$
- No significant excess is seen for any mass hypothesis in the range [17.5, 20.0] GeV/c²
- Set upper limits on
 $$\begin{split} &\sigma(pp\to X_{b\bar{b}b\bar{b}})\times\mathcal{B}(X_{b\bar{b}b\bar{b}}\to \\ &\Upsilon(1S)\mu^+\mu^-)\times\mathcal{B}(\Upsilon(1S)\to\mu^+\mu^-) \\ &\text{ normalising to }\Upsilon(1S)\to\mu^+\mu^- \text{ decay channel} \end{split}$$

Search for dibaryon states

[LHCb-PAPER-2018-005, arXiv:1804.09617, submitted to PLB]

- Search for the lightest charmed dibaryon $D_c^+ = [cd][ud][ud]$ with a mass below 4682 MeV in $\Lambda_b^0 \rightarrow \bar{p}D_c^+$ decays
- The D_c^+ dibaryon decay could proceed via quark rearrangement to the final state $p\Sigma_c^0$ with $\Sigma_c^0 \rightarrow \Lambda_c^+ \pi^-$ or via a lighter pentaquark state $P_c(\bar{u}[cd][ud])p$

• LHCb observed for the first time the $\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-$ decay using $3 \, \text{fb}^{-1}$ of data Resonance contributions in $\Lambda_c^+\pi^-$ Candidates / (4 MeV/c² 200 LHCb Data Total Candidates / (3 MeV/c² LHCb $\cdots A^{0}_{+} \rightarrow A^{+}_{-} p \overline{p} \pi^{-}$ ····· Background 100 30 20F 5550 5600 5650 5700 $m(\Lambda_c^+ p \overline{p} \pi^-)$ [MeV/c²] 2500 2600 $m(\Lambda_c^+\pi^-)$ [MeV/c²] $N_{\Lambda^0_r \to \Lambda^+_c p \bar{p} \pi^-} = 926 \pm 43$ $N_{\Lambda_{1}^{0} \to \Sigma_{2}^{0} p \bar{p}} = 59 \pm 10 \ N_{\Lambda_{1}^{0} \to \Sigma_{2}^{*0} p \bar{p}} = 104 \pm 17$ Roberta Cardinale LHCP 2018 14

Search for dibaryon states

[LHCb-PAPER-2018-005, arXiv:1804.09617, submitted to PLB]

• Measurements of branching ratio: $\frac{\mathcal{B}(\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$ $\frac{\mathcal{B}(\Lambda_b \to \Sigma_c^0 (\to \Lambda_c^+ \pi^-) p \bar{p} \pi^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-)} = 0.089 \pm 0.015 \pm 0.006$ $\frac{\mathcal{B}(\Lambda_b \to \Sigma_c^{*0} (\to \Lambda_c^+ \pi^-) p \bar{p} \pi^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ p \bar{p} \pi^-)} = 0.119 \pm 0.020 \pm 0.014$

• No dibaryon peak in $m_{\Lambda_c^+\pi^-p}$ spectrum

Roberta Cardinale LHCP 2018

Conclusions

• Spectroscopy is an essential part of the LHCb physics programme

- Study of exotic states
- Observation of doubly charmed baryons
- Study of excited b hadrons
- Continuing to exploit LHCb potential adding Run2 data
 - Updates of present analyses with higher stats, precision measurements
 - More amplitude analysis
 - Exotic states searches in other decay channels

Spare slides

SELEX Ξ_{ec}^+

Using collisions of a hyperon beam on fixed nuclear targets

Ξ_{cc}^{++} lifetime

Ξ_{cc}^{++} lifetime: systematic uncertainties

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014

Studies of χ_c Dalitz decays

Source of uncertainty	$m(\chi_{c1})$	$m(\chi_{c2})$	$m(\chi_{c2}) - m(\chi_{c1})$
Momentum scale	88	102	18
Energy loss correction	20	20	
Final-state radiation	7	10	12
Resonance shape	15	24	25
Background model	<2	<2	<2
Resolution model	7	2	6
Sum in quadrature	92	107	34

- Systematic uncertainties on the χ_{c2} width
 - Knowledge of the detector resolution (in statistical uncertainty)
 - Breit-Wigner parameters
 - Resolution model
 - Background model: negligible