

Top pair production cross sections in CMS

Juan R. González Fernández (Universidad de Oviedo)

On behalf of the CMS Colaboration

07 June 2018

LHCP 2018, Bologna.

Outlook of tt production process

- Essential for probing SM through pQCD precision tests.
- Constrains proton PDFs and new physics scenarios.
- Main background in plenty of BSM searches.

tt cross section overview

Inclusive tt cross section is well understood in a wide range of centre-of-mass energies.

tt observation in pPb collisions at 8.16 TeV

Phys. Rev. Lett. 119, 242001 (2017)

→ $\sqrt{(s[NN])} = 8.16 \text{ TeV}$

→ Lumi: 174 nb⁻¹

→ Measured cross section:

45 ± 8 nb

- → Main uncertainties: b tagging efficiency, bkg prediction.
- → Result in agreement with NNLO+NNLL pQCD with NLO proton/nuclear PDFs.

→ Signal extraction based on fits of the W→jj' mass in different b-jet and lepton flavor categories

Outlook of tt differential cross sections

Differential cross sections provide:

→ Comparison between MC generators and setups and data for LO

and NLO predictions.

→ Studies of the modeling in different regions of the phase space: tune of parameters.

Unfolded data: distributions directly comparable with predictions.

- Particle level: final state objects with safe and unambiguous definition. Fiducial phase space (avoid extrapolation uncertainties).
- Parton level: extrapolation to the full phase space, based on NLO ME and simulation of PS.

Kinematic event variables

CMS-TOP-16-014 (accepted by JHEP, arxiv:1803.03991)

- Differential tr production cross section, 13 TeV, 35.9 fb⁻¹. Single lepton (e/μ) + jets channel, particle level.
- Kinematic event variables that not require the reconstruction of the tt system: N_{lets} , H_T (scalar sum of Jet p_T), S_T (scalar sum of all particles), p_T^{miss} , p_T^{W} , lepton p_T and η .

Tuned Powheg+Pythia sample good N_{iet} distribution.

Lepton p_⊤ show same trends as top p_{T} .

Main uncertainties: Jet energy scale and modeling.

 p_{T}^{ℓ} (GeV)

300

Top quark and tt system

CMS-TOP-17-002 (accepted by PRD, arxiv:1803.08856)

- 13 TeV, 35.8 fb⁻¹, e/μ + jets channel, parton and particle level.
- Kinematic variables of top quark and tt system.
- Double differential cross sections.
 - → Top p_T , rapidity; $t\bar{t}$ p_T , mass, rapidity; Jet p_T , η ...

Differential cross sections in dilepton final state

CMS-PAS-TOP-17-014

• 13 TeV, 35.9 fb⁻¹, dilepton channel, parton and particle level.

 Kinematic variables of top quark and tt system and their decay products.

Top quark p_⊤ not well modeled by Powheg+Pythia8.

Differential cross sections in dilepton final state (2)

- The top quark **chromomagnetic dipole moment** (CMDM) is constrained from the differential $t\bar{t}$ cross section as a function of $\Delta\phi(I,\bar{I})$.
- Predictions at NLO in an EFT framework [Phys.Rev.D 91(2015)114010], sensitivity to CMDM parameterized with C_{tG}/Λ^2 (C_{tG} : dimensionless Wilson coef.).

Jet substructure in tt

CMS-PAS-TOP-17-013

- 13 TeV, 35.9 fb⁻¹, e/μ + jets, unfolded data to particle level.
- Multiple jet substructure variables: particle multiplicity, eccentricity, p_T dispersion, N-subjettiness ratios, energy correlations, etc.
- Samples enriched in jets coming from b quarks, light quarks and gluons.

- None of the probed generator has a good overall agreement with data.
 Further tuning based on this analysis is derived.
- A better agreement is achieved by lowering the default value of the effective strong coupling for FSR.
- Main uncertainties: FSR modeling, tracking.

Jet substructure in tt (2)

CMS-PAS-TOP-17-013

• Fit to $\alpha_s^{FSR}(m_z)$ (Pythia8) using different families of jet substructure observables.

- Fit to different shape-related jet observables.
- Great precision from the fit to jet width (λ_1) .

Best value of $\alpha_s^{FSR}(m_z) = 0.1227 \pm 0.0013$.

Underlying event in tt events

CMS-PAS-TOP-17-015

First measurement of UE in tt events.

- → <u>UE candidates:</u>
 All particles in the event not coming from PU interactions nor coming from tt → eµbb decay.
- → This analysis: Study of different observables: charged particle multiplicity, charged particle recoil, average particle p_T, etc.

Underlying event in tt events (2)

→ Different observables are compared with predictions.

→ Large sensitivity to FSR.

Main uncertainties: tracking efficiency, top quark $p_{\scriptscriptstyle T}$ modeling.

 \rightarrow Extraction of $\alpha_s^{FSR}(m_z)$.

$ ec{p}_{\mathrm{T}}(\ell\ell) $ region	Inclusive	Away	Toward	Transverse
Best fit α_S^{FSR}	0.120	0.119	0.116	0.119
68% CI	[-0.006, +0.006]	[-0.011, +0.010]	[-0.013, +0.011]	[-0.006, +0.006]
95.45% CI	[-0.013, +0.011]	[-0.022, +0.019]	[-0.030, +0.021]	[-0.013, +0.012]

Conclusions

 $\ensuremath{\bar{t\bar{t}}}$ cross section measurements give us an excellent tool to study QCD and probe the SM predictions.

Inclusive cross section:

→ Good agreement with theory over a large range of centre-of-mass energies (5.02 TeV to 13 TeV) and collision systems (pp, pN).

Differential cross section:

- → Several new results by CMS.
- → First UE measurement on tt events.
- → Several channels, also double differential.
- → A deep look into jet substructure.
- \rightarrow Great impact on the determination of α_s and $t\bar{t}$ modeling.

BACK UP SLIDES

tt production

Legacy inclusive cross sections at 7 and 8 TeV

Precision measurement with 5.0 fb⁻¹ at 7 TeV, 19.7 fb⁻¹ at 8 TeV, eµ.

Binned likelihood fit to multi-differential distributions, jet and b-jet multiplicity.

Precision higher than theory predictions:

√s	Value	Stat	Syst	Lumi	Total
7 TeV	173.6	2.1	+4.5, -4.0	3.8	6.2 (3.6%)
8 TeV	244.9	1.4	+6.3, -5.5	6.4	9.1 (3.7%)

√s	Theory	Scales	PDF+α _s	Total
7 TeV	173.3	+4.7, -6.0	9.0	10.8 (6.1%)
8 TeV	252.9	+6.4, -8.6	11.7	14.5 (5.7%)

JHEP. 08 (2016) 029

Constrains to SUSY models

Pole-mass measurement

Latest inclusive tt cross sections at 13 TeV (2.3 fb⁻¹)

EPJC 77 (2017) 172

- Very pure final state (> 95%).
- Counting method to extract the cross section.
- Main uncertainties: JES and modeling (hadronization, NLO generator).

$$\sigma_{\mathrm{t}\bar{\mathrm{t}}} = \frac{N - N_{\mathrm{B}}}{\mathcal{B}\mathcal{R} \cdot \varepsilon \cdot \mathcal{A} \cdot \mathcal{L}}'$$

 σ_{H} (13 TeV) = 815 ± 9 (stat) ± 38 (syst) ± 18 (lumi) pb = 815 ± 43 (5.3%) pb

- PLR fit to jet / b-tag categories. Syst. unc. as nuisances.
 - **QCD** and **W+Jets** estimated from data.
- Main uncertainties: W+Jets, modeling, luminosity.

JHEP 09 (2017) 051

 σ_{H} (13 TeV) = 888 ± 2 (stat) +28, -26 (syst) ± 20 (lumi) pb = 888 ± 34 (3.9%) pb

tt cross section measurement at 5.02 TeV

2015 dataset, 27.4 pb⁻¹.

$$\sigma_{t\bar{t}}^{NNLO} = 68.9^{+1.9}_{-2.3}(scale) \pm 2.3(PDF)^{+1.4}_{-1.0}(\alpha_S) \ pb$$

JHEP 03 (2018) 115

Combination measurement in lepton+jets,

Main uncertainties: Statistics, W+Jets estimate (in lepton +jets).

Dilepton, counting experiment.

Lepton+jets, PLR fit.

This measurement probes high <x> gluon PDFs

Differential cross sections in dilepton final state (2)

CMS-PAS-TOP-17-014

- Comparisons of different generators at particle level.
 - Powheg+P8
 - Powheg+H++
 - aMC@NLO+P8[PxPx]

Double differential cross sections

CMS-TOP-17-002 (submitted to PRD, arxiv:1803.08856)

