Top Quark Physics at the Tevatron

Sandra Leone (INFN Pisa)

On behalf of the CDF and D0 Collaborations

Bologna, June 7, 2018
The Fermilab Tevatron

1985-2011

Run II: $\sqrt{s} = 1.96$ TeV, 10 fb$^{-1}$ on tape
Tevatron stopped operating on September 2011 after a 26 years career

The birthplace of the top quark, observed in 1995 by CDF and DØ

Announcement of top quark discovery:
March 2nd, 1995 \Rightarrow Top is fully grown up

PRL 74 2626, PRL 74 2632 (1995)
Top Quark Production at Tevatron

- **QCD pair production**

\[\sigma_{SM} = 7.35^{+0.28}_{-0.33} \text{ pb} \]

(for \(m_{\text{Top}} = 172.5 \text{ GeV} \))

(PRL 110, 252004 (2013))

Dominant process at Tevatron (~85%)

Dominant process at LHC (~90%)

Tevatron is the right place to study the \(q \bar{q} \) annihilation in \(t\bar{t} \) production.
Top Quark Production at Tevatron

- **QCD pair production**

 $\sigma_{SM} = 7.35^{+0.28}_{-0.33}$ pb

 (for $m_{Top} = 172.5$ GeV)

 (PRL 110, 252004 (2013))

 Tevatron is the right place to study the qq annihilation in tt production

 Dominant process at Tevatron

 Dominant process at LHC (\sim90%)

Small cross section!

\Rightarrow Observation in ~ 67 pb$^{-1}$ \Rightarrow ~ 500 ttbar pairs produced per experiment

\Rightarrow In 10 fb$^{-1}$ \Rightarrow ~ 73500 ttbar pairs produced
SM predicts $\text{BR}(t \rightarrow Wb) \approx 100\%$

Event topology determined by the W decay mode

- Golden channel:
 - Good rate
 - Manageable background

- Small rate
- Small background

b quarks are always present
More than 20 years ago, CDF & D0 assembled all the pieces needed to discover the top

- The standard strategy to study top quarks remains the same today

Top quark mass standard measurement:

- Based on comparison of kinematic observables with MC generated at different top masses
- Determination of the best-fit value of the MC top-quark mass parameter

On going theoretical work:

- To translate the MC top-quark mass into a mass in a well defined renormalization scheme

Experimental way to address the question of the top-quark mass definition:

- Use alternative methods to determine the top-quark mass
 - With less inputs from MC
 - With different sensitivity to systematics
 - Using theory computation with well defined mass (i.e. from cross section, single top events, $t\bar{t}$+jets etc.)
D0 pole mass from inclusive cross section

- Compare the experimental $t\bar{t}$ cross section measurement with the theory computation
- From inclusive cross-section measurement in lepton+jets and dilepton channels:

\[\sigma_{t\bar{t}} = 7.26 \pm 0.13 \text{(stat.)} + 0.57 \pm 0.50 \text{(syst.)} \text{ pb} \]

- dependence from mass parametrized with a fourth-order polynomial function
- compared to NNLO+NNLL prediction
- extracting the most probable mass + uncertainty with normalized joint-likelihood function:

\[m_{\text{top}} = 172.8 \pm 1.1 \text{ (theo.)} + 3.3 \pm 3.1 \text{ (exp.) GeV} \]

1.9% relative uncertainty

PRD 94, 092004 (2016)

- Advantage: extract the top-quark mass in a well defined renormalization scheme
- Drawback: less precise than direct measurements
D0 pole mass from diff. cross section

- Using the differential $t\bar{t}$ cross section:
 - additional information coming from the shape of the distributions
 - possible since NNLO differential predictions are now available (JHEP 1605, 034 (2016))

- p_T^{top} and m_{tt} sensitive to pole mass
- Unfolded differential distributions from D0 paper PRD 90 092006 (2014)
- compared to NNLO QCD calc., four different PDF sets
- χ^2 fit to both distributions
 - p_T vs. m_{tt}

\[m_{\text{top}} = 169.1 \pm 2.5 \text{ (total) GeV} \]

- better uncertainty than inclusive (1.5%)
 - even using only lepton+jets
 - Theory input not using NNLL

FERMILAB-CONF-16-383-PPD
D0 Note 6473-CONF
Using the differential \(\bar{t}t \) cross section:
- additional information coming from the shape of the distributions
- possible since NNLO differential predictions are now available (JHEP 1605, 034 (2016))

\(p_T^{\text{top}} \) and \(m_{tt} \) sensitive to pole mass
- Unfolded differential distributions from D0 paper PRD 90 092006 (2014)
- compared to NNLO QCD calc., four different PDF sets
- \(\chi^2 \) fit to both distributions
 - \(p_T \) vs. \(m_{tt} \)

\[m_{\text{top}} = 169.1 \pm 2.5 \text{ (total) GeV} \]

- better uncertainty than inclusive (1.5%)
 - even using only lepton+jets
 - Theory input not using NNLL

FERMILAB-CONF-16-383-PPD
D0 Note 6473-CONF
D0 legacy top mass combination

- All data analyzed
- Combined with BLUE
 \[\chi^2/\text{ndof} = 2.5/3, \text{prob} = 47\%: \text{good consistency between the measurements} \]

D0 top quark mass combination:

\[m_{\text{top}} = 174.95 \pm 0.40 \text{ (stat.)} \pm 0.64 \text{ (syst.) GeV} \]

0.43\% relative uncertainty

PRD 95, 112004 (2017)
Forward backward asymmetry (A_{FB})

QCD + EW theory predicts positive asymmetry from $q\bar{q} \rightarrow t\bar{t}$ annihilation: top quark tends to go in the same direction as incoming proton at Tevatron

- NNLO+NNLL predicts $\sim 9.5\%$ (arXiv:1411.3007) while gg remains symmetric
- New physics can modify this asymmetry (Z', axigluons, ..)
- Experimentally, asymmetries based on fully reconstructed top quarks using the rapidity difference (Δy) of $t \rightarrow lvb$ and antitop $t \rightarrow jjb$, or using one or two leptons from top decay

- In terms of frame-independent rapidity difference (Δy) between top and antitop:

- In terms of rapidity of lepton(s) from top decay:

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$A_l = \frac{N(q_iy_l > 0) - N(q_iy_l < 0)}{N(q_iy_l > 0) + N(q_iy_l < 0)}$$
Lots of excitement in the past years!
→ First Tevatron l+jets analysis showed small deviations from SM
Lots of excitement in the past years!
→ First Tevatron ℓ+jets analysis showed small deviations from SM

More recent results show a lower value
→ More data and more refined analysis
Lots of excitement in the past years!
 → First Tevatron l+jets analysis showed small deviations from SM

More recent results show a lower value
 → More data and more refined analysis

NNLO QCD + NLO EW expectations estimated to be higher
A$^{tt}_{FB}$ Tevatron Combination

- Final Tevatron result
- CDF and D0 results combined using BLUE
- All correlations taken into account

Combined measurement:
\[A^{tt}_{FB} = 0.128 \pm 0.025 \]
Prediction: \[A^{tt}_{FB} = 0.095 \pm 0.007 \]
- Agreement within: 1.3\(\sigma\)

Mass dependence
- Tevatron combination:
 \[\alpha = (9.71 \pm 3.28) \times 10^{-4}/\text{GeV}, \beta = 0.131 \pm 0.034 \]
- NNLO QCD + NLO EW prediction:
 \[\alpha = (5.11^{+0.42}_{-0.64}) \times 10^{-4}/\text{GeV}, \beta = 0.087^{+0.005}_{-0.006} \]
 - Agreement within 1.3\(\sigma\)

$|\Delta y_{tt}|$ dependence
- Tevatron combination:
 \[\alpha = 0.187 \pm 0.038 \]
- NNLO QCD + NLO EW prediction:
 \[\alpha = 0.129^{+0.006}_{-0.012} \]
 - Agreement at the level of 1.5\(\sigma\)

NEW! PRL 120, 042001 (2018)
Combination of inclusive measurements:
$A_{\text{FB}}^l = 0.073 \pm 0.020$

NLO QCD + NLO EW inclusive prediction:
$A_{\text{FB}}^l = 0.038 \pm 0.003$

Agreement within 1.6σ

No combination of differential measurements

NEW! PRL 120, 042001 (2018)
Dilepton A_{FB}^{ll} Tevatron Combination

$A_{FB}^{ll} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$

$\Delta \eta = \eta_{e^+} - \eta_{e^-}$

- Combination of inclusive measurements:
 $A_{FB}^{ll} = 0.108 \pm 0.046$

- NLO QCD + NLO EW prediction:
 $A_{FB}^{ll} = 0.048 \pm 0.004$

- Consistency within 1.3σ

- No combination of differential measurements

NEW! PRL 120, 042001 (2018)
The measurements and their combinations are consistent with each other and with the SM predictions.

NEW! PRL 120, 042001 (2018)
Top polarization in lepton + jets channel

- SM: top quark is produced almost unpolarized in ttbar pair production
- Top polarization can be measured through angular distributions of decay products:

\[\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{i,\hat{n}}} = \frac{1}{2} \left(1 + P_{n} k_{i} \cos \theta_{i,\hat{n}} \right) \]

- \(P_{n} \) – polarization
- \(k_{i} \) – spin-analyzing power (~1 for leptons)

- \(\theta \) angle between decay product (in parent top rest frame) and quantization axis (in \(tt \) rest frame)
- 3 quantization axes used: beam, helicity, transverse axis
- Sample composition determined using kinematic discriminant based on likelihood ratio of various variables
- Template fit to \(\cos \theta \) distributions with top polarizations \(P = \pm 1 \) for lepton + >=4 jet events
Top polarization in lepton + jets channel

- Performed also combination with D0 dilepton channel
- Results consistent with theory at the level of 1-2σ

<table>
<thead>
<tr>
<th>Axis</th>
<th>Measured polarization</th>
<th>SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>$+0.070 \pm 0.055$</td>
<td>-0.002</td>
</tr>
<tr>
<td>Beam—D0 comb.</td>
<td>$+0.081 \pm 0.048$</td>
<td>-0.002</td>
</tr>
<tr>
<td>Helicity</td>
<td>-0.102 ± 0.061</td>
<td>-0.004</td>
</tr>
<tr>
<td>Transverse</td>
<td>$+0.040 \pm 0.035$</td>
<td>$+0.011$</td>
</tr>
</tbody>
</table>

PRD 95, 011101(R) (2017)
Top polarization in dilepton channel

- Top dilepton final state channels $ee, e\mu, \mu\mu$
- The methods of estimating the signal and backgrounds follow A_{FB} measurement analysis
- Examine $(\cos \theta^+, \cos \theta^-)$ 2D distribution:

$$\frac{1}{\sigma} \frac{d^2\sigma}{d \cos \theta^+ d \cos \theta^-} = \frac{1}{4} \left(1 + \alpha_+ P_+ \cos \theta^+ + \alpha_- P_- \cos \theta^- - C \cos \theta^+ \cos \theta^- \right)$$

α_\pm: the lepton spin-analyzing power (≈ 1 @NLO)
P_\pm: the degree of polarization of the top quark
C: the $t\bar{t}$ spin correlation coefficient

- weight signal templates using double differential angular distribution formula

We consider two special cases:
1. CP Conserved (CPC): $\alpha P^{CPC} = \alpha_+ P_+ = \alpha_- P_-$
2. CP Maximally Violated (CPV): $\alpha P^{CPV} = \alpha_+ P_+ = -\alpha_- P_-$

In SM $\alpha P = 0$ at tree level and negligible in higher order

\hat{a}: The quantization axis of top quark
\hat{b}: The quantization axis of anti-top quark

- Consider two spin quantization bases and the two assumptions of top quark production mechanism: (helicity basis, transverse basis) x (CPC, CPV)
Top polarization in dilepton channel

One dimensional comparison of data and signal + backgrounds

As an example, two extreme α_P allowed in the physical region are shown for CPC in helicity and transverse frame.
Top polarization in dilepton channel

Example of signal + backgrounds 2-dim templates in Helicity and Transverse base

CDF Run II Prelim (9.1 fb⁻¹)

Helicity

CPC(αP= 0.0)
+Backgrounds

CDF Run II Prelim (9.1 fb⁻¹)

Transverse

CPC(αP= 0.0)
+Backgrounds

Data distributions

CDF Run II Prelim (9.1 fb⁻¹)

Helicity

Data

CDF Run II Prelim (9.1 fb⁻¹)

Transverse

Data
- Likelihood fit results using 2 dimensional distributions:

\[
\begin{align*}
\alpha P_{\text{helicity}} & = -0.130 \pm 0.114 \text{ (stat.)} \pm 0.111 \text{ (syst.)} \\
\alpha P_{\text{CPV}} & = -0.046 \pm 0.123 \text{ (stat.)} \pm 0.040 \text{ (syst.)} \\
\alpha P_{\text{transverse}} & = -0.077 \pm 0.177 \text{ (stat.)} \pm 0.098 \text{ (syst.)} \\
\alpha P_{\text{CPV}} & = -0.111 \pm 0.146 \text{ (stat.)} \pm 0.055 \text{ (syst.)}
\end{align*}
\]

The measured polarizations are consistent with the SM predictions.

CDF Run II Prelim

Top Quark Polarization Measurement in Dilepton Channel at Tevatron

<table>
<thead>
<tr>
<th>Helicity Basis</th>
<th>(\alpha_{\text{SM}} = -0.0039 \pm 0.0004)</th>
<th>CDF (9.1 fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha P_{\text{CPC}} = -0.130 \pm 0.114 \text{ (stat.)} \pm 0.111 \text{ (syst.)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha P_{\text{CPV}} = -0.046 \pm 0.123 \text{ (stat.)} \pm 0.040 \text{ (syst.)})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transverse Basis</th>
<th>(\alpha_{\text{SM}} = 0.011)**</th>
<th>CDF (9.1 fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha P_{\text{CPC}} = -0.077 \pm 0.177 \text{ (stat.)} \pm 0.098 \text{ (syst.)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha P_{\text{CPV}} = -0.111 \pm 0.146 \text{ (stat.)} \pm 0.055 \text{ (syst.)})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beamline Basis</th>
<th>(\alpha_{\text{SM}} = -0.0019 \pm 0.0005)*</th>
<th>D0 (9.4 fb(^{-1})) ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha P_{\text{CPC}} = 0.072 \pm 0.105 \text{ (stat.)} \pm 0.042 \text{ (syst.)}) (without (A_{Rb}) constraint)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha P_{\text{CPC}} = 0.113 \pm 0.091 \text{ (stat.)} \pm 0.019 \text{ (syst.)}) (with (A_{Rb}) constraint)</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

- Several years after the end of RunII the Tevatron continues providing valuable top physics results.

- Many top quark areas of study (i.e. cross sections, single top s-channel, spin correlations, A_{FB}) are complementary to LHC measurements.

- CDF & D0 are in the process of making the last Tevatron legacy measurements:
 - The final Tevatron A_{FB} combination just published
 - D0 published the top quark pole mass meas. from cross sections
 - CDF recently presented a new top polarization measurement in the dilepton channel

- All measurements are in agreement with SM prediction.
Conclusion

- Several years after the end of RunII, the Tevatron continues providing valuable top physics results.
- Many top quark areas of study (i.e. cross sections, single top s-channel, spin correlations, A_{FB}) are complementary to LHC measurements.
- CDF & D0 are in the process of finishing the last Tevatron legacy measurements.
 - The final Tevatron A_{FB} combination just published.
 - D0 measured the top quark pole mass from cross sections.
 - CDF approved last week a new top polarization measurement in the dilepton channel.
- All new measurements in agreement with SM prediction.

Thank you!

For more details:
- http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/
- http://tevewwg.fnal.gov