

Measurements of electroweak boson production in p-Pb and **Pb-Pb collisions at** $\sqrt{s_{NN}}$ **5.02 TeV with ALICE**

Mohamad Tarhini For the ALICE collaboration

- Non-QGP effects exist for some observables

Heavy-ion collisions represent a unique experimental tool to create and study the quark-gluon plasma (QGP)

- Non-QGP effects exist for some observables
 - e.g: in nuclei, parton distribution functions (PDFs) are modified (**nPDFs**)
 - Lack of experimental datasets to constrain nPDFs -> large uncertainties

Introduction

Heavy-ion collisions represent a unique experimental tool to create and study the quark-gluon plasma (QGP)

- Non-QGP effects exist for some observables
 - e.g: in nuclei, parton distribution functions (PDFs) are modified (**nPDFs**)
 - Lack of experimental datasets to constrain nPDFs -> large uncertainties

Introduction

Heavy-ion collisions represent a unique experimental tool to create and study the quark-gluon plasma (QGP)

Not affected by the presence of the strongly-interacting medium The PDF modification is the major Cold Nuclear Matter (CNM) effect

- Non-QGP effects exist for some observables
 - e.g: in nuclei, parton distribution functions (PDFs) are modified (**nPDFs**)
 - Lack of experimental datasets to constrain nPDFs -> large uncertainties

Introduction

Heavy-ion collisions represent a unique experimental tool to create and study the quark-gluon plasma (QGP)

Not affected by the presence of the strongly-interacting medium The PDF modification is the major Cold Nuclear Matter (CNM) effect

W/Z bosons measurement in heavy-ion collisions can constrain nPDFs at large Q^2

The LHC experiments are complementary in the phase-space coverage

W/Z boson production at the LHC

Mohamad Tarhini LHCP-2018, Bologna

ALICE and LHCb

• ALICE can (in p-Pb and Pb-Pb collisions) access the large-x region where nPDFs are least constrained

ALICE detector and data samples

- The Z-boson signal is extracted by counting $\mu^+\mu^-$ candidates with 60 < $M_{\mu\mu}$ < 120 GeV/ c^2 , and p_T > 20 GeV/*c* for each muon
- Contribution from other physics background sources ($b\bar{b}$, $c\bar{c}$, $t\bar{t}$, $Z \rightarrow \tau \tau \rightarrow \mu \mu$) estimated w.r.t [$Z \rightarrow \mu \mu$] using PYTHIA and POWHEG simulations (< 1%)

- Combinatorial background accounted for by looking at the same-charge dimuon distribution
- The raw yield is corrected by the detector acceptance-times-efficiency obtained via MC simulations

Z-boson measurement in ALICE

- The signal is extracted using a MC template fit of the single muon distribution ($p_T > 10 \text{ GeV}/c$)
- Taking into account contributions of muons from heavy-flavour and Drell-Yan decays

The raw yield is corrected by the acceptance-times-efficiency of the detector

W-boson measurement in ALICE

Results: p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (JHEP 1702 (2017) 077)

First Z-boson measurement in ALICE

- Cross section compared to: pQCD calculations (NLO) [using CT10 NLO] •FEWZ calculations (NNLO) [using MSTW2008NNLO]
- Results in agreement with calculations with and without including nPDFs (EPS09)

The measurement is compatible with the different calculations. More precision is needed to constrain nPDFs

Z-boson production in p-Pb collisions

- Calculations with and without nPDF can reproduce the results
- As for the Z-boson results, more precision is needed to constrain nPDFs

For the centrality dependence, the contributions from W⁺ and W⁻ are added

Within uncertainties, no centrality dependence of W-boson production

11

Results: Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ (Phys. Lett. B780 (2018) 372-383)

• Larger data sample than in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Z-boson production in Pb-Pb collisions I

Mohamad Tarhini LHCP-2018, Bologna

• Within uncertainties, the result is in agreement with the calculation using three different nPDFs

• Larger data sample than in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Z-boson production in Pb-Pb collisions I

- Within uncertainties, the result is in agreement with the calculation using three different nPDFs
- 2.3 σ separation between the results and the calculations without including nPDF

• Larger data sample than in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Z-boson production in Pb-Pb collisions I

- Within uncertainties, the result is in agreement with the calculation using three different nPDFs
- 2.3 σ separation between the results and the calculations without including nPDF
- The R_{AA} is evaluated, dividing the normalised yield by CT14 pp cross section ($\sigma_{pp} = 11.92 \pm 0.43$ pb)

The PDFs modification depends on the rapidity

The results are in a better agreement with the calculation that includes PDFs modification

ALI-PUB-146539

The nPDF is expected to slightly depend on the centrality

- Free PDFs prediction overestimates the measurement by ~3 σ for 0-20% centrality
- The results are in agreement within uncertainties with calculations based on EPS09

• W/Z-boson production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Results can be described by theoretical calculations within uncertainties
- More precision is needed to conclude on the nPDFs
- direction

• Z-boson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Larger Pb-Pb data sample is expected later in 2018
- Results can be included in nPDF global fits

Analysis of the $\sqrt{s_{NN}} = 8.16$ TeV data sample is ongoing: 4 (12) x more statistics expected in the p-going (Pb-going)

Calculations with free PDFs overestimate the measurement by 2.3 σ (3 σ for the 20% most central collisions)

• Analysis is ongoing to measure the W-boson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Extra slides

comparison to other LHC results

• Results not directly comparable (different kinematic cuts) -> compare the ratio data over the corresponding pQCD predictions

• Calculations including EPS09 PDFs modification can describe data within uncertainties over the full rapidity interval

W/Z-boson production in p-Pb collisions

Dimuon invariant mass distributions

√s_{NN} = 5.02 TeV

Pb-Pb collisions at √s_{NN} = 5.02 TeV

nPDF set	EPPS16	EPS09	DSSZ12	nCTEQ15
Order	NLO	NLO	NLO	NLO
Flavour separation	Full	none	none	partial
Baseline PDFs	CT14	CTEQ6	MSTW2008	
# Free parameters	20	15	25	17
# data points	1811	929	1579	708
	Included experimental data			
Neutral current DIS				
DY lepton in pA				
RHIC pions in d-Au				
neutrino nucleus DIS				
LHC p-Pb jets				
LHC p-Pb W,Z				

