Recent developments in Monte Carlo Event Generators

LHCP 2018, Bologna
June 05, 2018
Stefan Prestel (Fermilab)

(with input from S. Frixione, R Frederix, J. Bellm, I. Helenius, C. Rasmussen, S. Höche, M. Schönherr, E. Re)
Accurate Monte Carlo predictions

Accurate pseudodata from theory tools → better analyses of backgrounds, better analyses of signals

Colliding composite objects kick-starts many processes:

- hard scattering
- radiation cascade
- multiparton interactions
- hadronization and decay
Accurate Monte Carlo predictions

Accurate pseudodata from theory tools \rightarrow better analyses of backgrounds, better analyses of signals

Colliding composite objects kick-starts many processes:
- hard scattering
- radiation cascade
- multiparton interactions
- hadronization and decay

Good theory tools should be universal, i.e. allow
...precision measurements of the emergence of jets, hadrons & new physics
...to obtain stringent indirect bounds through precision calculations

\rightarrow General-purpose event generators like HERWIG, PYTHIA, SHERPA et al.
HERWIG, PYTHIA & SHERPA cheat sheet

<table>
<thead>
<tr>
<th>Inc. beams</th>
<th>“Best” PQCD</th>
<th>pp MPI</th>
<th>Fragmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERWIG</td>
<td>ee, ep, pp, $\gamma x^{(*)}$</td>
<td>NLO+PS merged</td>
<td>Eikonal</td>
</tr>
<tr>
<td>PYTHIA</td>
<td>ee, ep, pp, γx, pA, DM</td>
<td>NLO+PS merged</td>
<td>Interleaved</td>
</tr>
<tr>
<td>SHERPA</td>
<td>ee, ep, pp</td>
<td>NNLO+PS match</td>
<td>Traditional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HERWIG7 news</th>
<th>PYTHIA8 news</th>
<th>SHERPA news</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQCD uncertainties, NLO merging, PS developments, new diffraction, new color reconnection</td>
<td>PS uncertainties, PS developments, improved elastic & diffractive cross sections, heavy ions and photons</td>
<td>PQCD uncertainties, PS developments, NLO merging w/ EW effects, massive 5F scheme.</td>
</tr>
</tbody>
</table>

...with important inputs from friends such as MadGraph, Openloops, Powheg-Box, aMC@NLO, Rivet, Professor...!
I) Hard scattering

Domain of fixed-order and precision calculations. Big community effort. Here, focus on recent advances intertwined with “big three”.
Many advances in precision QCD.

Multi-leg particularly important backgrounds.

Multi-loop allow precision indirect bounds.

Matching & merging combines calculations with each other and with subsequent parton shower.

NLO+PS matching (MC@NLO, POWHEG) default for backgrounds, still developing for signals (automatic diagram subtraction for BSM resonances)
NLO+PS merging is the state-of-the-art. Available in SHERPA, PYTHIA, and in HERWIG7 (new in 2017!)

Impressive collection of color-singlet processes @ NNLO+PS matching frontier in POWHEG-BOX MINLO

Matching recovers NNLO precision, but also allows to assess limitations!
Size of NLO EW correction \sim NNLO QCD, but with interesting observable dependence.

EW corrections can be combined with PS similar to NLO QCD case.

Important for even simple observables! Automation allows to assess formally subleading terms. Intense efforts. Many processes in SHERPA+OPENLOOPS & AMC@NLO
II) Parton showering

Crucial part of physics modeling, as required for jet structure and evolution. NLO+PS only as good as the PS \rightarrow intense renewed activity.
Parton shower approximations

PS aims at solving evolution equations

\[
\frac{d f_a(x, t)}{d \ln t} = \sum_{b=q,g} \int_0^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} [P_{ab}(z)] + f_b \left(\frac{x}{z}, t \right)
\]

by iteratively constructing new states distributed according to the evolution kernel \([P_{ab}(z)]_+\).

Current PS are spin-averaged, large-\(N_c\) & recover soft/collinear single real-emission pattern \(\Rightarrow\) Large uncertainties.

When improving the PS, we need sensible baselines. For example, showers that correctly treat the two leading color structures in $g \to gg$ splitting!

New implementation in HERWIG \tilde{Q} shower. Color corrected through swapping with probability

$$P_{\text{swap}} = \frac{w(1; 3; 2; 4)}{w(1; 2; 3; 4) + w(1; 3; 2; 4)}$$

w taken from MG5. Can generalize to swapping ≥ 2 gluons.

→ Systematic leading color?

Yields good data description.
To systematically define a sensible baseline, need to know the result beyond lowest order.

\[\Delta_{\text{NLO}}(t_0, t_1) = e^{-\int_{t_1}^{t_0} \frac{dt}{t} \int d\tilde{z} \left[(V+I+C)(\tilde{z})\mathcal{O}(\Phi_B) + \int d\Phi_1 (R-S)(\tilde{z},\Phi_1)\mathcal{O}(\Phi_R) \right]} \]

i.e. fully local NLO calculation in exponent of Sudakov factor.
Then derive LO shower from requirement of fully local subtraction.

Lessons from performing NLO calculation

- **Triple coll. sectors require spin correlations in LO PS. Small effect.**
- **Double soft sectors require color correlations in LO PS. Small effect.**
- **4-mom. shifts from on-shell int. states has to be compensated.**
- **Recoil compensation & genuine NLO correction almost balance out.**

⇒ Realistic uncertainties. Implemented for SHERPA and PYTHIA.
III) Semi-soft and non-perturbative effects

Non-perturbative models needed to describe the bulk of cross sections at LHC and beyond & offer exciting insights into emergent phenomena.
PYTHIA: Difficult to describe all LHC data w/ old single Pomeron exchange model.
⇒ Total + elastic σ updated to two modern parametrizations (ABMST, COMPAS w/ ≥ 4 exchanges).

HERWIG: Now includes diffraction for the first time + includes new soft particle production (multiperipheral) model.
Hadrons are formed from color potentials between low-energy partons. Data prefers non-perturbative color rearrangement.

Herwig model now includes baryonic reconnection component & non-perturbative $g \rightarrow s\bar{s}$.
Collective effects

Collisions at LHC are packed densely with color.

CR mimics collective effects, but not dynamics.

Model string interactions → Microscopic model of collectivity!
In 2010, CMS measured long-range azimuthal multiplicity correlations. Repulsive string interactions can reproduce the "ridge" in CMS pp data with only one parameter on top of PYTHIA. (plans in combination with heavy ions in PYTHIA \rightarrow Gustafson)
IV) Summary

- Improving the fixed-order **perturbative precision** of event generators:
 Many color-singlet processes described at NNLO+PS with MINLO
 Inclusion of NLO EW effects in full swing in AMC@NLO and SHERPA

- Interesting developments in defining **shower at higher order**:
 Treatment of subleading color relevant, even for leading-color PS
 Can systematically correct PS through fully differential NLO calculation in exponent.

- Continuous improvements of **non-perturbative physics**:
 Improved models of complete cross section and photoproduction.
 More sophisticated color reconnection models.
 Exciting new ideas in modelling of collectivity (in $p\bar{p}$ and heavy-ion)
Apologies for omitting

- Helicity showers for VINCIA LHC (arXiv:1708.01736)
- New dipole-like ISR for PYTHIA (arXiv:1710.00391)
- Advanced 5F massive scheme in SHERPA (arXiv:1712.06832, talk by Napoletano)
- Threshold logarithms in DEDUCTOR (arXiv:1711.02369)
- Combining high-energy resummation with DGLAP within HEJ + PYTHIA (arXiv:1712.00178)
- $\gamma\gamma$ collisions (arXiv:1510.05900) and new heavy-ion machinery in PYTHIA (arXiv:1607.04434, talk by Gustafson)
- More about EW corrections (talk by Zaro)

...and many more
Incoming photons from p, A, ℓ beams can also have non-perturbative structure.
\[\Rightarrow \] Important for $Q^2 \rightarrow 0$ piece of DIS, future $\ell\ell$ colliders, ultra-peripheral AA collisions.

Implementation in PYTHIA promising.