Soft and high- $p_{\rm T}$ QCD

Stewart Martin-Haugh on behalf of the LHC collaborations

> **LHCP 2018, Bologna** 5 June 2018

Science & Technology Facilities Council

Stewart Martin-Haugh (RAL)

Soft and high- p_{T} QCD

Introduction

LHC probes QCD at all scales

Elastic collisions \iff multi-TeV jet production

- Rich variety of physics
 - Non-perturbative physics
 - Differential cross sections
 - Fragmentation functions and PDFs
 - Underlying event

Introduction

LHC probes QCD at all scales

Elastic collisions \iff multi-TeV jet production

- Rich variety of physics
 - Non-perturbative physics
 - Differential cross sections
 - Fragmentation functions and PDFs
 - Underlying event

ALICE $pp \rightarrow \{\pi^0, \eta\} \rightarrow \gamma\gamma$ arXiv:1708.08745

- Transverse mass $(m_{\rm T})$ scaling of π^0 and η production
- New input to fragmentation functions above TeV scale

Experimental challenge: low $p_{\rm T} \gamma$

reconstruction

 $\begin{aligned} \pi^0 &= \langle u \bar{u}, d \bar{d} \rangle \\ \eta &= \langle u \bar{u}, d \bar{d}, s \bar{s} \rangle \end{aligned}$

- ▶ PHOS (PHOton Spectrometer) $\phi < 60^{\circ}$ coverage too low for $\eta \rightarrow \gamma \gamma$
- PCM = photon conversion method
- PHOS and EMCal triggers used

ALICE $\{\pi^0,\eta\}\to\gamma\gamma$ arXiv:1708.08745

- Two Component Model (TCM) fit used
- Largest NLO uncertainty is μ choice
- ▶ Previous ALICE π^0 at 7 TeV part of DSS14 FF

ALICE $\{\pi^0,\eta\}\to\gamma\gamma$ arXiv:1708.08745

- Pythia with Monash 2013 tune best describes data
- ► FF DSS07 (η), DSS14 (π^0)
- Good agreement with NLO calculation

 π⁰/η ratio deviates from m_T scaling by 6.2σ for p_T < 3.5 GeV

Agreement within uncertainties for NA27, PHENIX and ALICE data from $\sqrt{s} = 27.5 \text{ GeV}$ to 8 TeV

ALICE unidentified hadron production Preliminary figures

- Measure charged hadron spectra in tracklet multiplicity classes
- Observe enhancement relative to minimum bias data for $N_{\text{tracklets}} > 20$

More details here

LHCb Bose-Einstein correlations arXiv:1709.01769

- BEC between identical bosons enhanced when bosons are close in phase space
- Seen in ratio of correlated and reference correlation functions ρ :

 $C_2(Q) = \rho_2^{\text{identical}}(Q) / \rho_2^{\text{non-identical}}(Q) \sim [1 + e^{-RQ}](1 + \delta Q)$

•
$$Q^2 = -(p_1 - p_2)^2$$

- $\delta Q =$ long-distance correlation effects
- R = effective source radius
- λ = "chaoticity", strength of effect

Select non-identical bosons by mixing events

Measure

 $r_d(Q) \equiv C_2^{\text{data}}(Q)/C_2^{\text{MC}}$ to incorporate Coulomb and spin effects

 Investigate dependence on event activity

LHCb Bose-Einstein correlations arXiv:1709.01769

- Use LHCb PID to select 98% pure π sample
- Effective source radius R increases with n_{ch} , chaoticity λ decreases
- Fit quality not perfect: need different parameterisation?
- Compatible with ATLAS results (limited rapidity overlap)

CMS Bose-Einstein correlations at $13 \,\mathrm{TeV}$ CMS-PAS-FSQ-15-009

- Comprehensive comparison of BEC results with double ratio, cluster subtraction, hybrid cluster subtraction (arXiv:1712.07198)
- Compatibility between 7 TeV CMS and ATLAS results

ATLAS ordered hadron chains 1709.07384

- Inspired by string model of hadronisation
- ▶ Helicity suppresses collinear $q \rightarrow gg$ and $g \rightarrow gg$ emission \rightarrow helical QCD string
- Construct hadron chains algorithmically from particles (assume pions)
- Minimum bias dataset

ATLAS ordered hadron chains 1709.07384

- ▶ Fit to string model gives maximum triplet hadron chain mass M_{3h} < 575 ± 20 MeV</p>
- Enhanced correlation of like-sign vs. opposite-sign pairs at low Q can be explained by ordered hadron chains

CMS underlying event in $Z ightarrow \mu \mu$ arXiv:1711.04299

- ▶ ISR/FSR dominant at high $p_{\rm T}^{\mu\mu}$
- ► Agrees with tunes based on lead track/jet measurements → UE independent of hard process

CMS underlying event in $t\bar{t} ightarrow e\mu$ + jets CMS-PAS-TOP-17-015

- Yesterday's signal is today's UE hard process
- Interesting event topology: many different physics objects

CMS underlying event in $t\bar{t} ightarrow e\mu$ + jets CMS-PAS-TOP-17-015

- Measuring UE properties at $\mu_R, \mu_F \approx 2m_t$
- Comparisons with a range of generators, tunes and settings

High $p_{\rm T}$ QCD ($m_{jj} = 9.3 \,{\rm TeV}$)

High $p_{\rm T}$ QCD ($m_{jj} = 6.14 \,{\rm TeV}$)

Jet reconstruction (K. Pachal, Performance I)

- Uses particle flow (define and follow all particles through detector)
- CMS jet energy uncertainties DP-2016-020

- Uses topological cell clustering based on signal and noise thresholds
- ATLAS jet energy uncertainties arXiv:1703.09665

ATLAS inclusive jet and dijet cross sections arXiv:1711.02692

- Inclusive jets: $p_{\rm T} > 100 \,{\rm GeV}, |y| < 3$
- Better agreement with NNLO
 - " p_T^{jet} ": weight each jet in event according to $\mu_R = \mu_F = p_T^{jet}$ "
 - $p_{\rm T}^{\rm max}$ scale choice overestimates: see backup

ATLAS inclusive jet and dijet cross sections arXiv:1711.02692

- Dijets: $p_{\rm T} > 75 \,{\rm GeV}, \, p_{\rm T}^1 + p_{\rm T}^2 > 200 \,{\rm GeV}$
- Excellent agreement across a broad $p_{\rm T}$ and y range
- ► All PDFs overestimate slightly at high p_T and 2.5 < y^{*} = |y¹ - y²| < 3</p>

Azimuthal correlations

- Azimuthal angles between jets are sensitive to ISR, FSR
- Testing ground for pQCD, MC tunes

• Measure $\Delta \phi_{2i}^{\min}$ maximised by

 $2\pi/3$, 3 jets

 $\pi/2, 4$ jets

► Interesting for ≥ 3 jets, infrared safe

CMS azimuthal correlations arXiv:1712.05471

PH-2J - PowHeg, 2-jet NLO mode

• $\Delta \phi_{1,2}$ and $\Delta \phi_{2i}^{\min}$ have complementary kinematics

CMS azimuthal correlations arXiv:1712.05471

 $\Delta \phi_{1,2}$

- Exclude $\Delta \phi < \pi/2$: large $t\bar{t}$ and W/Z + jet backgrounds
- Best overall description given by MC@NLO in Herwig7

CMS azimuthal correlations arXiv:1712.05471 $\Delta \phi_{2i}^{\min}$

- ▶ PH-2J with Herwig7 and Pythia8 PS models $\Delta \phi_{2i}^{\min}$ best
- Compare with LO generators (Pythia8, Herwig++, MadGraph $(2 \rightarrow 4)$)

Stewart Martin-Haugh (RAL) Soft and high-pr QCD

ATLAS jet azimuthal decorrelations arXiv:1805.04691

Measure

$$R_{\Delta\phi}(H_{\rm T}, y^*, \Delta\phi_{\rm max}) = \frac{\frac{\mathrm{d}^2\sigma_{\rm dijet}(\Delta\phi_{\rm dijet} < \Delta\phi_{\rm max})}{\mathrm{d}H_{\rm T}\mathrm{d}y*}}{\frac{\mathrm{d}^2\sigma_{\rm dijet}({\rm inclusive})}{\mathrm{d}H_{\rm T}\mathrm{d}y*}}$$

- R_{Δφ} is a function of several aspects of QCD
 - $H_{\rm T}/2$: hard scale
 - $y^* = |y_1 y_2|$: kinematics
 - Δφ_{max}: hardness of additional jet production
- Choose data points with good theory prediction for α_S determination

ATLAS jet azimuthal decorrelations arXiv:1805.04691

- Calculate running with renormalisation group equation
- ▶ 1 σ below world average $\alpha_{\rm S}^{\rm PDG} = 0.1181 \pm .0011$
- Highest measured $\alpha_{\rm S}(Q)$ value to date

ATLAS soft drop jet mass measurement arXiv:1711.08341

- Soft drop jet grooming: decluster jet constituents (calo-clusters): see A. Larkoski's talk
- Remove soft and collinear radiation

$$\frac{\min(p_{\rm T}^{j_1}, p_{\rm T}^{j_2})}{p_{\rm T}^{j_1} + p_{\rm T}^{j_2}} > z_{\rm cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

- Can construct precise observables insensitive to e.g. non-global logarithms
- ATLAS measured scaled jet mass $\rho = m^{\text{soft drop}}/p_{\text{T}}^{\text{ungroomed}}$ for anti- $k_{\text{T}}R = 0.8$ jets
 - Keep energy scale $z_{\text{cut}} = 0.1$ to avoid z_{cut} resummation, vary $\beta \in 0, 1, 2$

ATLAS soft drop jet mass measurement arXiv:1711.08341

- Select dijet events with $p_{\rm T}^{j_1} > 600 \,{\rm GeV}, \, p_{\rm T}^{j_2}/p_{\rm T}^{j_1} < 1.5$
- Unfold to detector-level simulation: substantial differences between truth and reconstructed distributions

- Uncertainties vary widely with ρ
- High ρ: jet constituent energy scale dominates
- Low ρ : MC modelling dominates

ATLAS soft drop jet mass measurement arXiv:1711.08341

Normalise
$$\sigma$$
 to resummation
region $(-3.7 < \log_{10}(\rho^2) < -1.7)$

- ▶ $\beta \in 1, 2 \rightarrow$ less soft radiation is subtracted
 - NP corrections more important

$$\begin{array}{|c|c|c|c|c|} \log_{10}(\rho^2) < -3.7 & | & \text{NP} \\ -3.7 < \log_{10}(\rho^2) < -1.7 & | & \text{LO+NNLL} \\ \log_{10}(\rho^2) > -1.7 & | & \text{NLO+NLL} \\ \end{array}$$

Conclusions

- ► Thanks to all the collaborations for such an impressive range of results
- Sorry I couldn't include everything!
- Please join the QCD parallel sessions to learn more

Backup: ALICE detector

Backup: Cluster subtraction in Bose-Einstein correlations

- Use only single ratios
- ► Fit opposite-sign correlation function to phenomenological function
- Exclude resonances from fit

Backup: ATLAS BEC arXiv:1502.07947

- Three datasets used:
 - ▶ 0.9 TeV, $n_{\rm ch} \ge 2$, ≈ 4.5 M events
 - ▶ 7 TeV, $n_{\rm ch} \ge 2$, ≈ 10 M events
 - ▶ 7 TeV, $n_{\rm ch} \ge 150$, ≈ 18 k events

 R and λ are ≈ independent of energy to within uncertainties First evidence for saturation of R at high multiplicity, as predicted by pomeron-based models

Soft and high-pT QCD

33/35

Backup: underlying event

Backup: ATLAS soft drop jet mass measurement arXiv:1711.08341

- Jet substructure technique "soft drop": insensitive to non-global logarithms
- 1. Start with usual $anti k_T$ jet
- 2. Re-cluster with Cambridge-Aachen
- 3. Traverse the clustering tree backwards
- 4. Remove branch points that don't satisfy soft drop condition

$$\frac{\min(p_{\rm T}^{j_1}, p_{\rm T}^{j_2})}{p_{\rm T}^{j_1} + p_{\rm T}^{j_2}} > z_{\rm cut} \left(\frac{\Delta R_{12}}{R}\right)$$