

### FROM SMALL TO LARGE COLLIDING SYSTEMS: LESSONS LEARNED AND FUTURE PERSPECTIVES

F. Bellini (CERN)

for the ALICE, ATLAS, CMS, and LHCb Collaborations

Bologna, 6<sup>th</sup> June 2018



## "Small" and "large" systems





### **Resulting** system size → charged particle **multiplicity**



## Small systems much more than a reference

First lesson learned at the LHC:



pp, p-nucleus collisions much more than a "reference" for heavy-ion collisions

Focus of today's talk:

- I. Smooth evolution of particle composition across collision systems
- 2. Signatures of emergent collectivity in pp, p-Pb collisions
- 3. Collectivity without energy loss?

via a **selection** of (few) well known and (mostly) new **experimental** results, as well as some **open points and perspectives** (apologies if biased)!



## Smooth evolution of hadro-chemistry



Particle composition evolves smoothly across collision systems, depending on charged particle multiplicity.



**Common origin in all systems?** 



## **Strangeness production**

Enhancement of strangeness from low to high multiplicity pp, p-Pb collisions, until saturation in Pb-Pb [ALICE, *Nat. Phys. 13, 535–539 (2017)*]

 $\rightarrow$  confirmed with new data from LHC Run II

Ongoing efforts to explain behavior with models

- Lund string, color ropes (PYTHIA, DIPSY)
- core-corona (EPOS-LHC)
- thermal-statistical (canonical suppression) [V.Vislavicius, A. Kalweit, aXiv:1610.03001]



- $\bullet$  Conventional pp generators successful, with MPI + CR generating some collectivity, but now cracks.
- Need new framework for baryon production.

T. Sjostrand, Quark Matter 2018



## **Strangeness production**

Enhancement of strangeness from low to high multiplicity pp, p-Pb collisions, until saturation in Pb-Pb [ALICE, *Nat. Phys. 13, 535–539 (2017)*]

 $\rightarrow$  confirmed with new data from LHC Run II

Ongoing efforts to explain behavior with models

- Lund string, color ropes (PYTHIA, DIPSY)
- core-corona (EPOS-LHC)
- thermal-statistical (canonical suppression) [V.Vislavicius, A. Kalweit, aXiv:1610.03001]

... and with more data, by measuring production of  $\phi$ -meson (hidden strangeness) in small systems!



## **Collectivity (in short)**

"Loose" definition: correlations of (more than 2) particles across rapidity due to a common source

Origin of collectivity:

- Initial state correlations → among hadrons in the final state arise from momentum correlations at partonic level [gluon saturation, CGC, see B. Schenke's talk]
- Final state correlations → anisotropies and correlations in space converted into anisotropies in momentum space, e.g. via hydrodynamic flow [established in Pb-Pb collisions]

#### Flow in heavy-ion collisions



$$E\frac{\mathrm{d}^3N}{\mathrm{d}p^3} = \frac{1}{2\pi} \frac{\mathrm{d}^2N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} (1 + 2\sum_{\mathrm{n=1}}^{\infty} v_{\mathrm{n}} \cos[\mathrm{n}(\varphi - \Psi_{\mathrm{n}})]),$$

Characteristic features:

- Multiplicity dependence
- Higher harmonics azimuthal flow
- Mass scaling of v<sub>2</sub>
- Correlations between harmonics

## The hallmarks of flow in heavy-ion collisions (1)

Increase in mean  $p_T$  with increasing centrality  $\rightarrow$  Push from radial flow affects low  $p_T$  part of spectra



Baryon-to-meson ratios (with  $\Delta m$ )  $\rightarrow$  sensitive to particle production mechanisms (radial flow at low  $p_T$ , recombination at mid- $p_T$ )



## The hallmarks of flow in heavy-ion collisions (2)

Centrality / multiplicity dependence → reflects the degree of "anisotropy" in the initial geometry of the collision



Non-zero higher-order flow coefficients ("harmonics")

ightarrow sensitivity to fluctuations of initial geometry



## The hallmarks of flow in heavy-ion collisions (3)

Mass scaling of flow coefficients  $\rightarrow$  Expansion under a common velocity field



Correlations between harmonics

- $\rightarrow$  Sensitivity to fluctuations in initial geometry
  - $(v_2, v_3)$  and medium-transport properties  $(v_2, v_4)$



## Signs of collectivity in small systems



Signs of collectivity in **small systems** "discovered" at the LHC in terms of long-range ( $2 < |\Delta \eta| < 4$ ) near-side ( $\Delta \phi$ = 0) "ridge" in 2-particle correlations, visible in **high multiplicity** pp, p-Pb, Pb-p collisions

Are these long-range correlations coming from (hydrodynamic) flow?

 $\rightarrow$  Investigated with new measurements with run 2 data, new analysis techniques

# The challenge of removing "non-flow"

# In **small systems** the contribution of **non-flow** cannot be neglected:

- Different contribution from jets
- Larger fluctuations in the number of particle sources

### A word of **caution**:

- Sensitivity to the event class definitions used in analysis [ATLAS, EPJ C (2017) 77-428]
- Sensitivity to strategy for non-flow background subtraction





Non-flow subtraction / suppression is a delicate business in pp, p-Pb! Big effort ongoing in defining "smart" observables / new techniques

## If collectivity, it involves more than 2 particles

Measure elliptic flow  $v_2$  using correlations among k particles in a single event, subtracting correlations from smaller number of particles [A. Bilanzic et al., PRC 83 (2011) 044913]



## If long-range, correlations stay across sub-events



## True collectivity in small systems!





 $v_2{4} \approx v_2{6} \approx v_2{8} \rightarrow \text{true collectivity (even) in smallest systems}$  $v_2{2} \text{ larger } \rightarrow \text{ residual "non-flow"}$ 

## Light-flavor particle v<sub>2</sub>



Clear mass ordering at low  $p_T$  in p-Pb from new results on  $v_2^{sub}$  for identified hadrons

 $\rightarrow$  Consistent with hydrodynamics (and AA)

ALI-PREL-156487

# Light-flavor particle v<sub>2</sub>



Clear mass ordering at low  $p_T$  in p-Pb from new results on  $v_2^{sub}$  for identified hadrons

 $\rightarrow$  Consistent with hydrodynamics (and AA)

**BUT** it could also be due to other effects

- Initial stage effects (CGC + PYTHIA)
- Parton escape (AMPT)
- Hadronic rescattering (UrQMD)



Is mass ordering no longer an exclusive product of hydrodynamic flow?

# Heavy-flavor particle $v_2$ in p-Pb







Both light- and heavy-flavour hadrons show large azimuthal anisotropy in p-Pb collisions, up to 7-8 GeV/c

## Baryon-to-meson production – light-flavor sector





Across the three systems the baryon-to-meson ratios evolve **with multiplicity** in a qualitatively similar way

## Baryon-to-meson production – heavy-flavor sector





MC generators fail in reproducing the measured  $\Lambda_c/D^0$ Heavy flavor baryon-to-meson ratio similar to light-flavors ( $\Lambda/K^0_s$ )

## Baryon-to-meson production – heavy-flavor sector





Measurements in forward rapidity region provide further input for understanding charm fragmentation

## **Collectivity but no jet quenching?**

Similarities are observed for flow observables between peripheral Pb-Pb and high multiplicity p-Pb collisions.

New and more precise measurements from ALL experiments on nuclear modification factors.

In (minimum bias) **p-Pb**, no suppression at high- $p_T$  is observed, contrary to **peripheral Pb-Pb**.

 $\rightarrow$  Do we understand this?



## Nuclear modification in very peripheral collisions

Strong change of behaviour of  $R_{AA}$  beyond 80% centrality

→ reproduced by HG-PYTHIA with **biases** in event selection and collision geometry, and no nuclear modification.

Considering this, the jet quenching signal is smaller than typical systematics above ~80% centrality  $\rightarrow$  consistent with  $R_{pPb}$ 

#### ALICE, arXiv:1805.05212



C. Klein-Boesing – HIN, Fri. 15:30

## Look for jet quenching in p-Pb

### Look for jet quenching in p-Pb by

- comparing jet-hadron correlations in low and high multiplicity p-Pb events

[C. Klein-Boesing – HIN, Fri. 15:30]

- checking how much energy is transferred "out-of-cone" by jet-quenching [ALICE, arXiv:1712.05603]
- caution with biases in centrality selections

[ATLAS, PLB 748 (2015) 392-413, ALICE, arXiv:1712.05603]



If existing at all, jet quenching in p-Pb is a very small effect.

#### **Beware of selection biases !**

## **Conclusions and outlook**



**Continuity in chemistry and dynamics** across collision systems (dependence on charged particle **multiplicity**) is observed.

Many **new** precise measurements, new techniques and efforts to provide **"bullet-proof" observables** to measure collective effects in small systems.



**MC generators** can generate collective-like behaviour but **fail in the details** of hadron (baryon) production as a function of multiplicity.

Absence of jet-quenching in small systems remains as the main challenge to the final-state effect interpretation.

**Origin** of collectivity in small systems is still **to be understood**.

#### EXTRA

### Strangeness enhancement in small systems



## Blast-Wave model fits to particle spectra

#### Boltzmann-Gibbs Blast-Wave used to quantify radial

flow [E. Schnedermann et al., Phys. Rev. C48 (1993) 2462]

A simplified hydrodynamic model with 3 free fit parameters,

- $T_{kin}$  = kinetic freeze-out temperature
- $\langle \beta_T \rangle$ : transverse radial flow velocity
- *n*: velocity profile

to describe particle **production from a thermalized source + radial flow boost** 

Simultaneous fit to the  $\pi$ , K, p spectra

- increase of  $\langle \beta_T \rangle$  with centrality in AA
- Xe-Xe and Pb-Pb consistent
- **in pp and p-Pb**, similar evolution of the parameters towards high multiplicity
- at similar multiplicity,  $\langle \theta_T \rangle$  is larger for smaller systems



## Harmonic correlations in pp



## First measurement of $v_3$ with 4-particles in p-Pb





In Pb-Pb  $v_n{4}/v_n{2}$  larger for v2 than v3  $\rightarrow$  global geometry dominates for  $v_2$ In p-Pb  $v_n{4}/v_n{2}$  similar for v2 than v3  $\rightarrow$  initial state fluctuations as important

## Comparison to hydro models: $\pi v_n$



## Comparison to hydro models: p $v_n$

