Searches for light squark and gluino production

Brian Petersen, CERN

On behalf of ATLAS and CMS

7 June 2018 LHCP - Bologna

Motivation

NLO + NLL, pp, \sqrt{s} = 13 TeV

• TeV-scale gluinos are well-motivated by EW fine-tuning problem

- Cross-sections are large for TeV-scale quarks and gluinos
 - Ideal for early Run-2 searches

- Unfortunately no significant excess has been seen
 - Can only set limits on potential SUSY signals
- Will give overview of status after searches in 2016 data
- This will not be a comprehensive review
 - I will detail mainly recent results

Direct Squark & Gluino Decays

All-hadronic Searches

- Signal: jets and missing energy
- Main backgrounds:
 - Multi-jets (QCD)
 - W+jets & tt with missed lepton and hadronic taus
 - Irreducible Z(→vv)+jets
- Different kinematic variables are used to separate signal and backgrounds used in all-hadronic ATLAS and CMS searches:

- M_{eff} scalar sum of jets and E_{Tmiss}
- HT_{miss} vector sum of jets
- MT₂ "transverse mass" assuming two invisible part.
- $\alpha_{\rm T}$ di-jet balance $\alpha_{\rm T} = E_{\rm T}^{\rm J2}/M_{\rm T}$
- Recursive Jigsaw reconstruction of intermediate rest-frames

Analysis Results

- Data split in multiple bins of (b-)jet multiplicity, E_T^{miss}, and other kinematic variables to maximize sensitivity
- Data-driven background estimates (either fully or simulation scaled using data control regions)
- No significant excess in any all-hadronic search
 - CMS example: one bin at 3.5σ , three $>2\sigma$, but out of 174 bins

Mass Limits

- Set limits on signal cross sections vs masses
- Corresponding sparticle mass limits for BF=100%:
 - Squarks: up to 1.55 TeV assuming 8-fold squark degeneracy
 - Gluinos: up to 2.05 TeV with neutralinos up to 1.1 TeV

Gluino Decays to 3rd Generation Quarks

Gluino Searches

- Natural SUSY favors gluino decays to stop/sbottoms
- Provides rich set of possible final states
 - 4 b-jets and up to 4 top quarks
 - Up to 12 jets or 4 charged leptons
- Inclusive all-hadronic searches have good sensitivity, but additional sensitivity by using leptons and toptagging

Mass Limits, $g \rightarrow tt \chi_1^0$

- Good exclusion of heavy gluinos
 - Up to 1.97 TeV for gluinos and neutralinos up to 1.19 TeV
- Worse than expected exclusion in ATLAS result is due to 2.3σ excess in most sensitive bin (out of 14)

· · · Expected

Observed

2000

m_ã [GeV]

Mass Limits, $g \rightarrow bb\chi_1^0$

- Exclusion in 4b final state just as good
 - Gluinos excluded up to 2.05 TeV for 100% BF

Mixed Gluino Decays

- Limits weaken if a mixture of gluinos decays is allowed, particularly g→tbχ₁̄
- If g→tbχ₁ dominant, ATLAS limit is below 1.8 TeV even for very light neutralino

Gluino Decays with Compressed Stops

- Gluino decays through real stop generally excluded at same level as through virtual stop
- Exception: $m(\tilde{t}_1) \sim m(\tilde{\chi}_1^0)$
 - Can have gluinos below 1.8 TeV with light neutralino

Multi-step Decays

Multi-step Decays

- Can introduce additional sparticles in decay chain
 - Lower E_{Tmiss}, but higher jet and lepton multiplicity
- Inclusive 0 and 1-lepton searches still sensitive
- Sensitivity depends on intermediate sparticle masses
 - Gluino limits 1.7-2.0 TeV for intermediate decays to W/Z when the neutralino is light (assuming 100% BF)

Di-lepton Edge Search

- New ATLAS opposite-charge, same-flavor di-\(\ell \) search
- Targets strong decays through Z^(*) or sleptons
 - Searches for triangular edge or Z-peak in m(ll) spectrum
 - Opposite flavor pairs used for dominant backgrounds
- New low-p_⊤ di-lepton selection for compressed region
 - p_T(ℓ)>7 GeV and m(ℓℓ)>4 GeV
- Excludes gluinos up to 1.85 TeV for slepton decays and sensitive down to mass splittings of 20 GeV

Decays with Higgs

- Dedicated CMS search for decays with Higgs boson
- 1-2 large radius jets with double b-tag and large E_{Tmiss}
 - Backgrounds estimated from 0-tag and mass sidebands
- For models with energetic Higgs production, gluino mass limits between 1.8 and 2 TeV depending on BF

Decays with Photons

Decays to Photon(s)

- With gauge-mediated supersymmetry breaking,
 Gravitino, G, becomes stable LSP with mass<<1 GeV
- χ₁ becomes NLSP

Decay depends on NLSP type

- Wino-like: mix of $\widetilde{\chi}_1^0 \rightarrow \gamma \widetilde{G} \& \widetilde{\chi}_1^0 \rightarrow Z\widetilde{G}_{0.6}$
- Higgsino-bino mixture will give mix of χ

 ²

 ²

Focus here on photonic decay mode

Photon Searches

- ATLAS 2-photon+E_{Tmiss} search targeting Bino NLSP
 - 2x75 GeV photons and large $H_T = p_T^{\gamma} + \sum_{jets} p_T$
- ATLAS 1-photon+jets for Higgsino-Bino mixture NLSP
 - 3-5 jets and large M_{eff}=H_T+E_{Tmiss}
- CMS 1-photon+jets search targeting strong production
 - Six bins in E_{Tmiss} and H_T

Limits on Gluinos

- Bino NLSP with mostly di-photon final state excluded for gluinos <2.15 TeV
- Wino NLSP and considered Bino-Higgsino NLSP excluded up to ~2 TeV for heavy NLSP, while for light NLSP, gluinos could be as light as 1.6 TeV

RPV Decays

R-Parity Violation

- LSP is not stable if R-parity violation allowed
- RPV component of MSSM superpotential:

$$W_{\text{RPV}} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2$$

- i,j and k are quark/lepton generations,
- λ_{ijk} is strength of the baryon-number violating terms giving rise to "UDD scenarios"
- If λ " is small, LSP is long-lived
 - If very long-lived, it decays outside detectors → same as RPC
 - If inside the experiments → next talk
- For large λ", LSP decays promptly
 - At maximal values even non-LSPs can decay promptly
- Needs dedicated searches without E_{Tmiss} requirement

Gluino to tbs decays

- In MFV SUSY, RPV coupling to 3rd gen quarks largest
 - Gluino can decay to tbs through (virtual) stop
- Best limits from 1-lepton+many jets+bjet searches
 - Data-driven background estimates due to high jet multiplicity
- Both ATLAS and CMS set gluino limits at ~1.6 TeV

Generic UDD Search

- Weaker limits if RPV coupling not mostly to 3rd gen
- ATLAS targeted search using R=1 anti-kt fat jets and b-tagging

$$M_{\rm J}^{\Sigma} = \sum_{\substack{p_{\rm T} > 200 \, {\rm GeV} \\ |\eta| \le 2.0 \\ j=1-4}} m_{\rm jet}^{j}$$

- Use $\Delta \eta_{12} = |\eta(j_1) \eta(j_1)|$ and M_J^{Σ} to discriminate and estimate bkgd
- Assumes RPV coupling the same for all generations
 - Cannot exclude gluino below 1 TeV for either decays through $\widetilde{\chi}_1^0$ or direct RPV decay of gluino to three quarks!

 CMS uses di-fat jet (R=1.2) search Events / 30 GeV to target 4-5 quark decays

Suppresses QCD and top pair background by n-subjettiness and fat jet mass asymmetry

QCD background uses data-driven

38.2 fb⁻¹ (13 TeV)

arXiv:1806.01058 **CMS**

Data

QCD m PDF

 $t\overline{t} \overline{m} PDF$ $m_{\tilde{a}} = 100 \text{ GeV}$

 $m_{\tilde{a}} = 500 \text{ GeV}$

200

150

100

50

Summary

Summary

- Extensive search for squarks of gluinos in ATLAS&CMS
 - Wide range of possible decay signatures considered
- Typically set gluino mass limits 1.8-2.0 TeV
 - Weaker limits for mixtures of decays
 - Much weaker for RPV decays (could be as light as 1 TeV)
- Squark mass limits typically 1.5-1.8 TeV
 - Assumes degenerate light-flavour squarks and R-parity conserved
 - Otherwise can be below 1 TeV

Backup

Kinematic Variables

$$\alpha_T = \frac{E_T^{j_2}}{M_T} \underset{m \to 0}{=} \sqrt{\frac{E_{T,2}}{2E_{T,1}(1-\cos\phi)}} \to \frac{H_T - \Delta H_T}{2\sqrt{H_T^2 - H_T^2}}$$

$$\not\!\!H_T = |\sum_{i \in \text{jet}} \vec{p}_T^{j_i}|$$

Double b-tagging

- Dedicated BDT trained for b-tagging highly boosted H→bb fat jets
- Finds subjets in anti-kt 0.8 jet to resolve decay chain with two separate b-hadrons
 - Calculate b-tagging sensitive variables with respect to subjet axis
- Includes correlations between subjet variables

Multi-b Analysis Excess

- Small excess in 0-lepton signal region with high m_{eff} (>2500 GeV) and N_{jets}>6
 - No excess in corresponding 1-lepton SR

LLE Scenarios

- Lepton-number violating RPV also considered
 - In simplest scenario have $\widetilde{\chi}_1^0 \rightarrow \gamma \ell \ell' \nu$
- Strong sensitivity from ATLAS 4-lepton (e, μ,τ) search
 - 4 isolation leptons (0-2 τ_{had}) and large $m_{eff} = \sum_{\ell} p_T + \sum_{jets} p_T + E_{Tmiss}$
- Depending on RPV coupling to τ and $\widetilde{\chi_1^0}$ mass, gluino mass limit between 1.4 and 2.2 TeV

Limits on Squarks

- Again strong limits for Bino NLSP m(q)>1.8 TeV using ATLAS 2-photon analysis
- For Wino NLSP mass limit can be below 1.4 TeV for light NLSP

Gravitino through Z

- Search for on-shell Z set limits on GMSB models with decays through Z
 - For 100% BF to Z exclude models with gluino below 1.5 TeV
 - Inclusive jet+E_{TMiss} set limits at 1.8 TeV for light neutralino

Generality of Limits

- At end of Run-1 did extensive comparison of simplified model limits and exclusion in pMSSM-19 scan
 - Weaker limits, but not excessively so
 - However, no RPV or GMSB type models in scan

