

UΗ

Der Forschung | Der Lehre | Der Bildung

Searches With Jet Substructure

Roman Kogler University of Hamburg

on behalf of the ATLAS and CMS Collaborations

LHCP 2018 Bologna, June 7, 2018

Overview

Methodology

- Diboson resonances
- tb and tt resonances

This talk: new resonances W', Z'

[Aurelio Juste]

- Dark matter (MET+X) [Adish Vartak]
- Vector-like quarks
- SUSY [Brian Petersen,Yu Higuchi]

Emphasis on new results, not complete selection

Disclaimer: focus on simple interpretations in benchmark models, more complete interpretations possible and available

Complexity

qq/gg Resonances

3

Ш

茁

qq/gg Resonances

Boost!

Boost!

Jet Substructure

Identification of $W/Z/H/t \rightarrow Hadrons$

Collimation depends on p_T

- **R** = **I**.0 (ATLAS)
- R = 0.8 (CMS)

W/Z/H Boson-Tagging I

Separation of QCD branching and 2-prong structure

I) Jetmass $M_{\text{jet}} = \left(\sum_{i} p_{i}\right)^{T}$

Subject to many systematic sources (rad, had, UE, PU...)

 $\delta M_{\rm UE/PU} \propto p_T R^4$

corrections through dedicated algorithms

- PF+PUPPI (cal, PU, CMS)
- Track-assisted jet mass (cal, ATLAS)
- Soft-drop (UE/had, CMS)
- Trimming (PU/UE/had, ATLAS)

10-15% misidentification at70-80% signal efficiency

jet

W/Z/H Boson-Tagging 2

2) Substructure

Exploit characteristic radiation pattern

- N-subjettiness ratios τ_2/τ_1 (CMS)
- Energy correlation ratios D₂ (ATLAS)
- Subjet b-tagging for $H \rightarrow bb$ (ATLAS/CMS)

I-5% misidentification at 50-60% signal efficiency

Top Quark Tagging

Top Quark Tagging - Calibration

[D. Soper, M. Spannowsky, PRD 87 054012 (2013)] [ATL-CONF-2014-003]

10

Identifying Boosted H→bb

Subjet b tagging (ATLAS)

Leading track jets with R=0.2 inside a large jet with R=1.0

ATLAS Simulation Preliminary

 10^{6}

10⁵

10⁴

 10^{3}

10²

10

0.1

0.2

0.3

Multi-jet rejection

[ATL-CONF-2016-039]

0.8

Higgs-jet efficiency

0.9

 $p_{-} > 1000 \text{ GeV}$, No $m_{i_{-1}}^{calo}$ selection

Asymm. b-tag (70% wp)

eading subjet b-tag

0.7

Double b-tag

Single b-tag

0.6

0.5

BDT based on track, SV, substructure inputs

Discrimination against boosted $t \rightarrow bW$ with double b-tag

0.4

Improvement at high p_T , discrimination against $g \rightarrow bb$

[talk by J. Dolen]

Boosted H→bb Candidate

13

Background Estimates

Multi-jet background

A curse

- many orders of magnitude larger than any signal
- modelling very difficult, large uncertainties

and a blessing

- jet mass: opportunity for dedicated control and validation regions
- precise predictions from data possible with in-situ validations

Numerous methods

► ABCD extrapolations, R_{p/f}, decorrelated taggers, transfer factors...

Diboson Resonances

Diboson-tagged dijet event, M_{JJ} = 5.0 TeV

M(JJ) = 5.0 TeVRun: 307601 Event: 2054422947 2016-09-01 16:52:46 CEST / EXPERIMENT

VV Resonances (JJ)

Signal categories

6 for VV: (WW,WZ,ZZ) x (HP,LP) 4 for qV: (W,Z) x (HP,LP)

NEW 80 fb⁻¹ VV Resonances (JJ)

Improved jet substructure resolution with tracking information (TCCs): 50% improvement at high pT

Optimal S/B with p_T dependent mass and D_2 selections

[talk by J. Love]

Extension to 4- and 5-prongs: [CMS, arXiv:1806.01058]

VW Resonances (LJ)

Simultaneous fit to jet mass and resonance mass spectra:

W

VH Resonances

Analysis in 6 categories:

(vvbb, ℓ vbb, $\ell\ell$ bb) x (resolved H, merged H)

Very different background compositions in each category, relies on modelling of SM backgrounds

Roman Kogler

[ATLAS, JHEP 03, 174 (2018)]

Diboson Summary

$\mathbf{HH} \rightarrow \mathbf{4b}$

Resonant (BSM) and non-resonant (SM and BSM)

- combination of resolved and fully-merged
- 3 orthogonal signal categories, based on N(b-jets)

Non-resonant production larger than 13 x SM excluded @ 95% CL

[see also CMS, PLB 781, 244 (2018), CMS-PAS-HIG-17-009]

[ATLAS, arXiv:1804.06174]

Boosted analysis extends mass range

$HH \rightarrow 4b$

So far uncovered: semi-resolved

- resolved + merged final state
- orthogonal to fully-merged analysis [CMS, PLB 781, 244 (2018)]

P H H H jet H

[CMS-PAS-B2G-17-019]

- improves limits on resonant production up to 55%
 - for radion with m = 0.75 1.6 TeV
 - above I.6 2 TeV: sensitivity from fully merged analysis
- non-resonant production: better by factors of 2-3 for some benchmarks

24

25

tb and tt Resonances

$W' \rightarrow tb (JJ)$

Shower deconstruction used for the first time in an analysis Multi-jet backgrounds: sidebands

[ATLAS, PLB 781, 327 (2018)]

Observed 95% CL limit

Expected 95% CL limit

Expected 95% CL limit $\pm 1 \sigma$

Expected 95% CL limit ±2 or

NLO W' cross-section (ZTOP)

4000

0 4500 500 m(W'_B) [GeV]

tight t tag, 2b tags

Ш 笧

5000

Many improvements since last result

- improved PU mitigation, b-tagging
- BDT for W+jet suppression

NFV

CRs to constrain backgrounds

28

GIS (narrow resonances)

Dijet bump hunts with jet tagging

Improvements on methods and reconstruction essential to achieve ultimate sensitivity

Phase transition in searches: target large widths, contact interactions, cascade decays

Exciting times ahead!

Additional Material

W tagger: signal efficiency measurement of D₂ cut

[ATLAS-CONF-2018-016]

Validating the background model

[ATLAS-CONF-2018-016]

Roman Kogler

$HH \rightarrow 4b$

Background estimation through R_{p/f}

NEV

[CMS-PAS-B2G-17-019]

