LHCP2018, Bologna, 4-9 June 2018

Searches for new heavy quarks

Aurelio Juste (ICREA/IFAE, Barcelona)

On behalf of the ATLAS and CMS Collaborations

Introduction

The LHC represents an extremely powerful instrument to search for new heavy quarks:

- **Direct searches** in a plethora of kinematic regions and final state signatures.
- Broad program of precise measurements of SM processes and parameters.

➔ Higgs boson cross section measurements exclude chiral 4th generation of quarks.

A more compelling possibility: Vector-Like Quarks (VLQs)

- Present in many BSM extensions:
 e.g. Composite Higgs, extra dimensions.
- Colored spin-1/2 fermions whose left and right components transform the same under SU(2)_L.
- Can mix with their SM counterparts and regulate the Higgs mass-squared divergence.
 - → attractive solution to the Hierarchy Problem.

➔ Focus of this talk

Vector-Like Quarks: Production and Decay

Production:

- Pair production: via QCD, "universal" production mode (just depends on m_Q).
 → Focus of Run 1 searches
- Single production: via EW interaction, depends on coupling strength, but potentially important at high m_Q.

Decay: $Q \rightarrow Wq$, Zq, Hq, all with sizable BR

with 3rd generation quarks.

3

Pair Production Strategy

- Very rich phenomenology, depending on VLQ mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.

➔ Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.

➔ Multiple searches required, ideally overlapping on the plane.

Pair Production Strategy

- Very rich phenomenology, depending on VLQ mass and quantum numbers.
- Goal is to probe full BR plane in as model independent possible way.

→ Searches specialized on particular heavy quark decay modes, but also able to probe part of the plane.

➔ Multiple searches required, ideally overlapping on the plane.

Run 1 excludes T-quark (B-quark) masses below ~720 (740) GeV for any combination of BRs

Run 2 Status and Plans

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
 - Large increase in production cross section at high masses
 - Continue to exploit pair production above 1 TeV
 - Add single production above 1 TeV

Pair production model independent, relevant at low mass

Single production model dep. coupling, PDF-favored at high mass

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity

2015: 3.9 fb⁻¹ recorded

First results exceeding Run 1 sensitivity!

2016: ~36 fb⁻¹ recorded

Exceed design inst. lumi of ~10³⁴ cm⁻²s⁻¹. Record daily delivered luminosity of ~0.6 fb⁻¹.

> Results shown today: up to 36 fb⁻¹

2017: ~47 fb⁻¹ recorded

Record inst. lumi of ~2.1x10³⁴ cm⁻²s⁻¹.

2018: Ongoing (started on April 17, 2018).
 Inst. lumi regularly at ~2x10³⁴ cm⁻²s⁻¹.
 Expect 60 fb⁻¹ delivered in 2018.

Full Run 2: ~130 fb⁻¹

More sophisticated

sophisticated

Less

Pair Production: $TT \rightarrow Wb + X$

- Search targeting high BR($T \rightarrow W^+b$), but also sensitive to other decay modes.
- Most sensitive searches exploit the lepton+jets final state.
- Strategy:
 - Presel: 1 lepton, high E_{T}^{miss} , ≥ 4 jets/ ≥ 1 b-tags.
 - Reconstruct boosted hadronic W boson. •
 - Tight cuts: high H_{T} (*), additional cuts to exploit boosted ٠ topology for W bosons.
 - Analyze reconstructed T-quark mass spectrum. ٠

State of the state

Pair Production: TT→Zt+X

- Most sensitive searches exploit Z→II decays, giving OS dileptons or trilepton final states (coming soon).
- Search targeting high BR(T \rightarrow Zt), with Z \rightarrow vv.
- Strategy:
 - Presel: 1 lepton, E_T^{miss}>300 GeV, ≥4 jets, ≥1 b-tag.
 - Signal region defined through tight cuts to suppress tt background (on m_{T,W}, am_{T2}, ≥2 large-R jets, etc).
 - Control regions used to normalize tt and W+jets bkgs in signal region. Background prediction checked in dedicated validation regions.

~36 fb⁻¹

95% CL obs (exp) limits: BR(T→Zt)=1: m_T >1.16 (1.17) TeV Doublet: m_T >1.05 (1.06) TeV Singlet: m_T >0.87 (0.89) TeV 11

Pair Production: TT→Ht+X

- Search targeting high BR(T→Ht), with H→bb, but designed as broad-band search.
- Strategy:
 - Consider lepton+jets and high-E_T^{miss}+jets channels.
 - Top and Higgs tagging via mass cut on large-R jets.
 - Categorize events according to b-tag, top-tag and Higgs-tag multiplicities (a total of 34 regions).
 - Analyze effective mass spectrum.
 - Signal-depleted regions used to constrain in-situ bkg uncert. through likelihood fit to data.

95% CL obs (exp) limits: BR(T \rightarrow Ht)=1: m_T>**1.43** (1.34) TeV Doublet: m_T>**1.31** (1.26) TeV BR(T \rightarrow Zt)=1: m_T>**1.17** (1.18) TeV Singlet: m_T>**1.19** (1.11) TeV

12

Pair Production: BB, $X_{5/3}X_{5/3} \rightarrow WtWt$

Events / bir

Data / Pred

- Searches targeting $B \rightarrow W^{-1}$ or $X_{5/3} \rightarrow W^{+1}$.
- Consider SS dilepton+jets and lepton+jets signatures, both with comparable sensitivity.
- Strategy (lepton+jets):
 - Presel: 1 lepton, high E_T^{miss} , \geq 4 jets/ \geq 1 b-tags.
 - Multiple event categories depending on the presence of boosted hadronic W bosons.
 - Analyze B-quark mass or BDT output (ATLAS), or min[M(I,b)] (CMS) spectra.

BR(B, X_{5/3}→Wt)=1: m_T>**1.35** (1.33) TeV Singlet: m_T>1.17 (1.14) TeV

~36 fb⁻¹

Pair Production: Inclusive Search

- Inclusive search for TT and BB production focused on final states with leptons.
- Three channels considered:

1-lepton:

- W and Higgs tagging based on large-R jets via jet substructure variables and b-tagging requirements.
- 16 event categories based on W, H and b-tag multiplicities.
- Analyze S_T distribution.

Same-sign 2-leptons:

• Counting experiment.

3-leptons:

• Analyze S_T distribution.

~36 fb⁻¹

Pair Production Summary: Vector-Like Top

1.31 (1.26)

T in (T, B) doublet

1.28 (1.24)

Pair Production Summary: Vector-Like Bottom

(*) Several new results imminent

Most restrictive single bounds to date

VLB masses below ~0.91 TeV excluded for any possible combination of BRs

CMS

ATLAS

Vector-like B BR Hypothesis	95% CL Limit on m _B (TeV) obs (exp)	95% CL Limit on m _B (TeV) obs (exp)
100% Wt (chiral, X)	1.35 (1.33)	1.24 (1.24)
B singlet	1.17 (1.14)	1.17 (1.13)
B in (B, Y) doublet	0.76 (0.76) [Run 1]	0.94 (0.92)

Single Production Strategy

- Many channels (w/ and w/o leptons) to be exploited.
- Powerful handles against backgrounds:
 - Forward jet tagging
 - Boosted techniques
 - VLQ mass reconstruction

• Helicity propagation in decay

Single Production: $T(\rightarrow Zt)+X$

Strategy:

- Presel: $Z(\rightarrow II)$ +jets, ≥ 1 b-tags, small $\Delta R(II)$.
- Top-tagging and W-tagging on AK8 jets.
- 10 event categories depending on lepton flavor, top kinematics (fully-merged/semi- merged/resolved) and presence of forward jets.
- Use heavy quark mass built from reconstructed Z-boson and top candidates.

~36 fb⁻¹

18

• Main background: Z+jets. Estimated using dedicated control regions.

Single Production: $B(\rightarrow Hb)+X$

Strategy:

- Trigger based on scalar sum of jet p_T.
- Presel: ≥3 small-R jets/≥1 b-tag, ≥1 large-R jet tagged as Higgs boson. Additional kinematic cuts to suppress multijet background.
- Higgs tagging based on large-R jets via jet substructure variables and b-tagging requirements.
- Events categorized according to forward jet multiplicity.
- Main background: tt and multijet. Multijet estimated using data-driven techniques.

~36 fb⁻¹

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
 - Increased use of simplified models
 - Combination of pair and single production
 - Take into account effect of extra resonances in some cases

Typical spectrum in minimal coset SO(5)/SO(4) $\Delta m^2 \sim y^2 v^2 \left\{ \Delta m^2 \sim y^2 f^2 \left\{ \Delta m^2 = 0 \right\} \right.$

 $X_{2/3}$

G*

T

b. *t*

W, H, Z

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard production

E.g. via heavy gluon: $G^* \rightarrow TT (m_{G^*} \ge 2m_T)$,

 $G^* \rightarrow Tt (m_T + m_t < m_{G^*} < 2m_T)$

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches
- Make sure we don't miss a signal!
 - Non-standard decays BR(Q→Wq)+BR(Q→Zq)+BR(Q→Hq)<1 Example: Q→q+η, η CP-odd scalar

- If exotic BRs dominant, signal may be picked by existing searches.
- For comparable BRs, it becomes difficult as signal split into challenging channels. But also promising channels: TT→W⁺bttt!

Summary and Outlook

- Run 2 program of searches for vector-like quarks in full swing
 - First round of publications with up to 36 fb⁻¹ of data at √s=13 TeV becoming available.
 - Pair production searches significantly extend the Run 1 sensitivity, excluding VLQ masses up to 1.3 TeV (depending on scenario).
 - Broad program of single production searches being developed.
 - Starting to target non-standard production/decay modes.
- More sophisticated searches being developed with the full Run 2 dataset, capitalizing on the experience gained and improvements in object reconstruction algorithms.

Exciting times ahead!

<u>To do</u> Capitalize on Run 1 experience Fully exploit increased CM energy Plan according to integrated luminosity Improved interpretation of searches Make sure we don't miss a signal!

Recent VLQ Searches

For more information see:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G/index.html

19.7 fb⁻¹ (8 TeV) PRD 93 (2016) 012003 σ(pp→ TT) (pb) CMS 100% T \rightarrow bW Capitalize on Run 1 experience Most sensitive channels Hadronic th Leptonic bW Complementary channels Inclusive Hadronic bW Combina 950 (qH ↓ Observed 95% CL mass limit [GeV] Missing channels 10 ATLAS 09 900 = 8 TeV, 20.3 fb⁻¹ Summary results: Most powerful experimental strategies BR(B 0.8 Same-Sign dil. 850 arXiv:1504.04605 0.7 Zb/t + X Improved background estimation 10-2 800 JHEP11(2014)104 0.6 Wt+X 750 techniques PRD91,112011(2015) 600 80 0.5 Hb+X 700 arXiv:1505.04306 Reducing the impact of systematic 0.4 650 **CMS** Simulation (8 TeV) uncertainties Misid. probability (Hadronic top) 600 CA, 300 < p_T < 500 GeV/c iet mass > 60 GeV/c² 550 ∆R(AK5,CA15) < 1.1 800 500 0.7 0.8 0.9 1 JHEP 1508 (2015) 105 $BR(B \rightarrow Wt)$ ATLAS 🔶 Data Events / 100 GeV ATLAS - Data 30 30 20.3 fb⁻¹. √s=8 TeV TT singlet (600) 20.3 fb⁻¹, vs=8 TeV tt+light-jets tt+light-jets \geq 6 j, \geq 4 b, M^{min ΔR} > 100 GeV tt+cc \geq 6 j, \geq 4 b, M^{min ΔR} > 100 GeV 25 tt+cc R=0.8 jet CSV 25 Pre-fit tt+bb tt+bb Post-fit ---- R=0.8 subjet CSV tīV ∎ tīV 20 20 tτ tīH ----- R=1.5 jet CSV Non-tt Non-tt ···· R=1.5 subjet CSV 15 /// Total Bkg unc. /// Total Bkg unc. 15 ---- Matched AK5 CSV(≥2) Ht+X 10-2 Ht+X 10 0.2 0.6 0.8 0.4 Tagging efficiency $(H \rightarrow b\overline{b})$ 5 1.25 Data / Bkg 1.25 0.75 0.75 26 0.5^E 0.5^E 500 1500 2000 1000 500 1000 2000 1500 H_T [GeV] H_T [GeV]

Events / 100 GeV

Data / Bkg

Single Production: $T(\rightarrow Ht)+X$

- Searches performed in lepton+jets and all-hadronic final states, with comparable sensitivity.
- Basic strategy (all-hadronic):
 - Trigger based on scalar sum of jet p_T .
 - Presel: \geq 4 small-R jets, \geq 1 large-R jets, H_T>1100 GeV.
 - Top and Higgs tagging based on large-R jets via jet substructure variables and b-tagging requirements.
 - Main background: tt and multijet. Multijet estimated using data-driven techniques.

See also: PLB 771 (2017) 80

Single Production: T(→Wb)+X

Basic strategy:

- Presel: 1 lepton, high E_T^{miss}, ≥1 hard central jet b-tagged, 1 forward jet.
- Additional tight kinematic requirements.
- Kinematic reconstruction of leptonic W candidate and pairing with b-tagged central jet to estimate heavy quark mass.
- Main backgrounds: tt and W+jets. Estimated using dedicated control regions.

~2-3 fb⁻¹

- Capitalize on Run 1 experience
- Fully exploit increased CM energy
- Plan according to integrated luminosity
- Improved interpretation of searches So far:
 - Renormalizable extension of the SM including mixing term between SM quarks and VLQs (e.g. arXiv:1306.0572).
 - Phenomenological (non-renormalizable) Lagrangian parameterized with coupling terms.

Simplified model

$$\begin{split} \mathcal{L} &= \ \frac{g_w}{2} \left[c_R^{XV} \, \overline{X}_R \not\!\!\!\! \forall t_R + c_L^{XV} \, \overline{X}_L \not\!\!\!\! \forall t_L \right] + \frac{g_w}{2} \left[c_L^{XV} \, \overline{X}_L \not\!\!\!\! \forall b_L + c_R^{XV} \, \overline{X}_R \not\!\!\!\! \forall b_R \right] \\ &+ \ \left[c_R^{Xh} \, h \, \overline{X}_L t_R + c_L^{Xh} \, h \, \overline{X}_R t_L \right] + \left[c_L^{Xh} \, h \, \overline{X}_R b_L + c_R^{Xh} \, h \, \overline{X}_L b_R \right] + \text{h.c.} \,, \end{split}$$

		couplings					
partner (MG name)	Q	W^{\pm}	Z	h	$W^{\pm}W^{\pm}$		
$T_{2/3}$ (T23)	2/3	c_L^{TW}, c_R^{TW}	c_L^{TZ}, c_R^{TZ}	c_L^{Th}, c_R^{Th}			
$B_{1/3}$ (B13)	-1/3	$c_L^{BW}, \ c_R^{TW}$	c_L^{BZ}, c_R^{BZ}	$c_L^{Bh}, \ c_R^{Bh}$	_		
$X_{5/3}$ (X53)	5/3	$c_L^{XW}, \ c_R^{XW}$					
$Y_{4/3}$ (Y43)	-4/3	c_L^{YW}, c_R^{YW}	_				
$V_{8/3}$ (V83)	8/3				$c_L^{VW}, \ c_R^{VW}$		

ATLAS-CONF-2016-072