Bologna 2018

Sixth Conference on Large Hadron Collider Physics

Top Quark Physics

Markus Schulze

Humboldt-University Berlin

• The LHC is in full swing

• Expecting >150 fb⁻¹(run1+2) >300 fb⁻¹(run1+2+3)

• Impressive results by experimental collaborations

• Challenge in the years to come: Precision and subtle effects Leave no stone unturned.

 Top quark physics is one of the most prominent places to search for New Physics

Part 1: State-of-the-Art

Part 2: Physics Impact on SM and BSM

NNLO QCD + NLO electroweak corrections

Journal of High Energy Physics

October 2017, 2017:186 | <u>Cite as</u>

Top-pair production at the LHC through NNLO QCD and NLO EW

Λ		+	h	~	r	c
n	u	u		U	L,	э

Authors and affiliations

Michał Czakon, David Heymes, Alexander Mitov, Davide Pagani 🖂 , Ioannis Tsinikos, Marco Zaro

NNLO QCD + NLO electroweak corrections

Journal of High Energy Physics

October 2017, 2017:186 | <u>Cite as</u>

Top-pair production at the LHC through NNLO QCD and NLO EW

```
Authors
```

Authors and affiliations

Michał Czakon, David Heymes, Alexander Mitov, Davide Pagani 🖂 , Ioannis Tsinikos, Marco Zaro

Uncertainties			
scale	± 3%		
pdf	± 2%		
alpha_s	± 1%		
m_top	± 3%		
electroweak	± 2%		

First NNLO QCD correction: [Czakon,Fiedler,Mitov] (2013)

First NLO weak corrections: [Beenakker,Denner,Hollik, Mertig,Sack,Wackeroth] (1993) [Kühn,Scharf,Uwer] (2007) [Bernreuther,Fucker,Si] (2008)

NNLO QCD + NLO electroweak corrections

- Electroweak Sudakov suppression: –20% at $p_{\rm T}$ =2 TeV
- Photon initial states: Very small contribution
- Real emission of Z/W-Bosons: only ~ +3% at large $p_{\scriptscriptstyle \rm T}$

- Includes NNLO decay through spin-correlated Narrow-Width-Approximation $\mathcal{O}(\Gamma_t/m_t)$
- Approximate NNLO production correction

from SCET-based soft-gluon resummation [Ahrens,Ferroglia,Neubert,Pecjak,Yang] (2010)

Journal of High Energy Physics March 2018, 2018:85 | Cite as

Polarized double-virtual amplitudes for heavy-quark pair production

Authors Authors and affiliations

L. Chen, M. Czakon 🖂 , R. Poncelet

$$\mathcal{R}_{q,g}^{2\text{-loop}} = \frac{1}{4} \operatorname{Tr} \left[R^{q,g} (\mathbf{1} + \hat{\mathbf{s}}_t \sigma) \otimes (\mathbf{1} + \hat{\mathbf{s}}_{\bar{t}} \sigma) \right] \Big|_{2\text{-loop}}$$

$$\begin{aligned} \mathcal{R}_{q,g}^{2\text{-loop}} &= A_{q,g} + (B)_{q,g} \left(\epsilon^{\mu\nu\alpha\beta} p_{1\mu} p_{2\nu} p_{3\alpha} s_{t\beta} + \epsilon^{\mu\nu\alpha\beta} p_{1\mu} p_{2\nu} p_{3\alpha} s_{\bar{t}\beta} \right) \\ &+ (C)_{q,g} \left((s_t \cdot s_{\bar{t}}) \right) + (D)_{q,g} \left((p_1 \cdot s_t) (p_1 \cdot s_{\bar{t}}) + (p_2 \cdot s_t) (p_2 \cdot s_{\bar{t}}) \right) \\ &+ (E_{12})_{q,g} \left((p_1 \cdot s_t) (p_2 \cdot s_{\bar{t}}) \right) + (E_{21})_{q,g} \left((p_2 \cdot s_t) (p_1 \cdot s_{\bar{t}}) \right). \end{aligned}$$

- Numerical interpolation grid with thresh. and HE-expansion
- Full spin and color information
- Provides spin-density matrix

Single top quark production + decay at NNLO QCD

Single top quark production + decay at NNLO QCD

Journal of High Energy Physics

May 2018, 2018:149 | Cite as

Resummation for (boosted) top-quark pair production at NNLO+NNLL in QCD

Authors

Authors and affiliations

Michal Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott 🖂 , Xing Wang, Li Lin Yang

soft limit: $\hat{s}, |t_1|, m_t^2 \gg \hat{s}(1-z)^2$,

boosted-soft limit: $\hat{s}, |t_1| \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$

	$\Gamma^i_{\rm cusp},\ \beta$	$\boldsymbol{\gamma}^h, \gamma^S, \gamma^\phi$	$\boldsymbol{H}^{(m)}, \widetilde{\boldsymbol{s}}^{(m)}, C_D, \widetilde{s}_D$	$\alpha_s^n L^k$
NLL	NLO	LO	LO	$2n-1 \leq k \leq 2n$
NNLL	NNLO	NLO	NLO	$2n-3 \leq k \leq 2n$
NNLL'	NNLO	NLO	NNLO	$2n-4 \leq k \leq 2n$

Table 1. Our naming scheme for the logarithmic accuracies. We list the perturbative orders at which the cusp anomalous dimension, the QCD β -function, all other anomalous dimensions and matching functions need to be evaluated in order to obtain resummation at a given logarithmic order.

Journal of High Energy Physics

May 2018, 2018:149 | <u>Cite as</u>

Resummation for (boosted) top-quark pair production at NNLO+NNLL in QCD

Authors

Authors and affiliations

Michal Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott 🖂 , Xing Wang, Li Lin Yang

soft limit: $\hat{s}, |t_1|, m_t^2 \gg \hat{s}(1-z)^2$,

boosted-soft limit: $\hat{s}, |t_1| \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$

	$\Gamma^i_{\rm cusp}, \beta$	$\boldsymbol{\gamma}^h, \gamma^S, \gamma^\phi$	$\boldsymbol{H}^{(m)}, \widetilde{\boldsymbol{s}}^{(m)}, C_D, \widetilde{s}_D$	$\alpha_s^n L^k$
NLL	NLO	LO	LO	$2n-1 \leq k \leq 2n$
NNLL	NNLO	NLO	NLO	$2n-3 \leq k \leq 2n$
NNLL'	NNLO	NLO	NNLO	$2n-4 \leq k \leq 2n$

Table 1. Our naming scheme for the logarithmic accuracies. We list the perturbative orders at which the cusp anomalous dimension, the QCD β -function, all other anomalous dimensions and matching functions need to be evaluated in order to obtain resummation at a given logarithmic order.

• Note: *Boosted-soft resummation* is the small-mass limit of *soft gluon resummation*

Journal of High Energy Physics

May 2018, 2018:149 | Cite as

Resummation for (boosted) top-quark pair production at NNLO+NNLL in QCD

Authors

Authors and affiliations

Michal Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott 🖂 , Xing Wang, Li Lin Yang

soft limit: $\hat{s}, |t_1|, m_t^2 \gg \hat{s}(1-z)^2$,

boosted-soft limit: $\hat{s}, |t_1| \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$

	$\Gamma^i_{\rm cusp},\ \beta$	$\boldsymbol{\gamma}^h, \gamma^S, \gamma^\phi$	$\boldsymbol{H}^{(m)},\widetilde{\boldsymbol{s}}^{(m)},C_D,\widetilde{s}_D$	$\alpha_s^n L^k$
NLL	NLO	LO	LO	$2n-1 \leq k \leq 2n$
NNLL	NNLO	NLO	NLO	$2n-3 \leq k \leq 2n$
NNLL'	NNLO	NLO	NNLO	$2n-4 \leq k \leq 2n$

Table 1. Our naming scheme for the logarithmic accuracies. We list the perturbative orders at which the cusp anomalous dimension, the QCD β -function, all other anomalous dimensions and matching functions need to be evaluated in order to obtain resummation at a given logarithmic order.

• Note: Boosted-soft resummation is the small-mass limit of soft gluon resummation

(June 2018) Transverse-momentum resummation for top-quark pair production at the LHC

Stefano Catani^(a), Massimiliano Grazzini^(b) and Hayk Sargsyan^(b)

Journal of High Energy Physics

May 2018, 2018:149 | Cite as

Resummation for (boosted) top-quark pair production at NNLO+NNLL in QCD

Authors

Authors and affiliations

Michal Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott 🖂 , Xing Wang, Li Lin Yang

soft limit: $\hat{s}, |t_1|, m_t^2 \gg \hat{s}(1-z)^2$,

boosted-soft limit: $\hat{s}, |t_1| \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$

	$\Gamma^i_{\rm cusp},\ \beta$	$\boldsymbol{\gamma}^h, \gamma^S, \gamma^\phi$	$\boldsymbol{H}^{(m)},\widetilde{\boldsymbol{s}}^{(m)},C_D,\widetilde{s}_D$	$\alpha_s^n L^k$
NLL	NLO	LO	LO	$2n-1 \leq k \leq 2n$
NNLL	NNLO	NLO	NLO	$2n-3 \leq k \leq 2n$
NNLL'	NNLO	NLO	NNLO	$2n-4 \leq k \leq 2n$

Table 1. Our naming scheme for the logarithmic accuracies. We list the perturbative orders at which the cusp anomalous dimension, the QCD β -function, all other anomalous dimensions and matching functions need to be evaluated in order to obtain resummation at a given logarithmic order.

• Note: *Boosted-soft resummation* is the small-mass limit of soft gluon resummation

Journal of High Energy Physics

May 2018, 2018:149 | Cite as

Resummation for (boosted) top-quark pair production at NNLO+NNLL in QCD

Authors

Authors and affiliations

Michal Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott 🖂 , Xing Wang, Li Lin Yang

soft limit: $\hat{s}, |t_1|, m_t^2 \gg \hat{s}(1-z)^2$,

boosted-soft limit: $\hat{s}, |t_1| \gg m_t^2 \gg \hat{s}(1-z)^2 \gg m_t^2(1-z)^2$

	$\Gamma^i_{\rm cusp},\ \beta$	$\boldsymbol{\gamma}^h, \gamma^S, \gamma^\phi$	$\boldsymbol{H}^{(m)},\widetilde{\boldsymbol{s}}^{(m)},C_D,\widetilde{s}_D$	$\alpha_s^n L^k$
NLL	NLO	LO	LO	$2n-1 \leq k \leq 2n$
NNLL	NNLO	NLO	NLO	$2n-3 \leq k \leq 2n$
NNLL'	NNLO	NLO	NNLO	$2n-4 \leq k \leq 2n$

Table 1. Our naming scheme for the logarithmic accuracies. We list the perturbative orders at which the cusp anomalous dimension, the QCD β -function, all other anomalous dimensions and matching functions need to be evaluated in order to obtain resummation at a given logarithmic order.

Resummation for $t\bar{t} + X$:

- $t\bar{t} + H$: [Kulesza, Motyka, Stebel, Theeuwes] (2017) [Broggio, Ferroglia, Fiolhais, Onofre] (2017)
- [Kulesza, Motyka, Schwartländer, Stebel, Theeuwes] (2017) $t\bar{t}+W:$ [Broggio, Ferroglia, Ossola, Pecjak] (2016)
- $t\bar{t} + Z$: [Broggio, Ferroglia, Ossola, Pecjak, Samshima] (2017)

• Note: Boosted-soft resummation is the small-mass limit of soft gluon resummation

Off-shell calculations

• extends previous off-shell calculations through L+J channel

Off-shell calculations

00000

• extends previous calculation in the narrow-width approximation

G. BEVILACQUA^{*a*}, H. B. HARTANTO^{*b*}, M. KRAUS^{*c*}, T. WEBER^{*d*} AND M. WOREK^{*d*}

LO

150

200

NLO / LO

50

100

 $p_{T,\gamma}$ [GeV]

NLO

Off-shell calculations

top-antitop pairs at NLO EW and QCD at the LHC

Authors	Authors and affiliations
Ansgar Denner, Jean-Nicola	s Lang, Mathieu Pellen 🖂 , Sandro Uccirati

• extends previous calculation in the narrow-width approximation

7/13

LO

150

200

Part 1: State-of-the-Art

Part 2: Physics Impact on SM and BSM

A Theoretical Study of Top-Mass Measurements at the LHC Using NLO+PS Generators of Increasing Accuracy

(Jan 2018)

Silvia Ferrario Ravasio,^a Tomáš Ježo,^b Paolo Nason,^c Carlo Oleari^a

A Theoretical Study of Top-Mass Measurements at the LHC Using NLO+PS Generators of Increasing Accuracy

(Jan 2018)

Silvia Ferrario Ravasio,^a Tomáš Ježo,^b Paolo Nason,^c Carlo Oleari^a

NLO and off-shell effects in top quark mass determinations

(Sep 2017)

Gudrun Heinrich,^a Andreas Maier,^b Richard Nisius,^a Johannes Schlenk,^c Markus Schulze,^d Ludovic Scyboz,^a Jan Winter ^e

A Theoretical Study of Top-Mass Measurements at the LHC Using NLO+PS Generators of Increasing Accuracy

(Jan 2018)

Silvia Ferrario Ravasio,^a Tomáš Ježo,^b Paolo Nason,^c Carlo Oleari^a

NLO and off-shell effects in top quark mass determinations

(Sep 2017)

m_t^{out} - m_tⁱⁿ [GeV]

3

2

0

0.2

0.4

0.6

0.8

 $\mathcal{R}(m_t^{\mathrm{pole}},\rho_s)$

Ratio to 73.2 GeV

Gudrun Heinrich,^a Andreas Maier,^b Richard Nisius,^a Johannes Schlenk,^c Markus Schulze,^d Ludovic Scyboz,^a Jan Winter ^e

Journal of High Energy Physics March 2018, 2018:169 | <u>Cite as</u>

Top quark mass studies with $tar{t}j$ at the LHC

Authors

Authors and affiliations

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Schulze, M. Worek 🖂

Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation

(Apr 2018)

Celine Degrande,^a Fabio Maltoni,^b Ken Mimasu,^b Eleni Vryonidou,^a Cen Zhang^c

Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory

Cen Zhang Phys. Rev. Lett. **116**, 162002 – Published 21 April 2016

The European Physical Journal C

December 2017, 77:887 | <u>Cite as</u>

Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC

Authors

Authors and affiliations

Fabio Maltoni, Davide Pagani, Ambresh Shivaji 🖂 , Xiaoran Zhao

فععوه

10/13

Electroweak top quark couplings

Study of top quark dipole interactions in $t\bar{t}$ production associated with two heavy gauge bosons at the LHC

Seyed Mohsen Etesami, Sara Khatibi, and Mojtaba Mohammadi Najafabadi Phys. Rev. D **97**, 075023 – Published 17 April 2018

Table 6: Limits on $d_V^{g,Z}$ and $d_A^{g,Z}$ at 95% CL corresponding to 30, 300, and 3000 fb⁻¹ integrated luminosities.

Coupling	$30 {\rm ~fb^{-1}}$	$300 {\rm ~fb^{-1}}$	$3000 \ {\rm fb}^{-1}$
d_V^g	[-0.023, 0.026]	[-0.012, 0.015]	[-0.006, 0.009]
$d_A^{\dot{g}}$	[-0.024, 0.024]	[-0.013, 0.013]	[-0.007, 0.007]
d_V^Z	[-0.22, 0.21]	[-0.12, 0.11]	[-0.07, 0.06]
d_A^Z	[-0.21, 0.21]	[-0.11, 0.11]	[-0.06, 0.06]

Electroweak top quark couplings

Study of top quark dipole interactions in $t\bar{t}$ production associated with two heavy gauge bosons at the LHC

Seyed Mohsen Etesami, Sara Khatibi, and Mojtaba Mohammadi Najafabadi Phys. Rev. D **97**, 075023 – Published 17 April 2018

Table 6: Limits on $d_V^{g,Z}$ and $d_A^{g,Z}$ at 95% CL corresponding to 30, 300, and 3000 fb⁻¹ integrated luminosities.

Coup	ling 30 fb^{-1}	$300 {\rm ~fb^{-1}}$	$3000 \ {\rm fb^{-1}}$
d_V^g	[-0.023,0.02	[-0.012, 0.015]] [-0.006,0.009]
$d_A^{\dot{g}}$	[-0.024,0.02	[-0.013,0.013] [-0.007,0.007]
d_V^Z	[-0.22, 0.21]	[-0.12, 0.11]	[-0.07, 0.06]
d_A^Z	[-0.21, 0.21]	[-0.11, 0.11]	[-0.06, 0.06]

Figure 3: The limits at 95% CL on d_V^g (right panel) and on d_A^g (left panel) from $t\bar{t}WW$ (same-sign leptons) and $t\bar{t}ZZ$ (four-lepton) with 300 and 3000 fb⁻¹ are shown. The indirect limits on d_A^g (neutron electric dipole moment) and on d_V^g (rare B meson decays) are presented as well as the limits from the combination of $t\bar{t}$ cross section at the LHC8 and Tevatron. Also, the limits which could be derived from tail of $t\bar{t}$ mass spectrum at the FCC-hh and LHC are shown.

Community effort: Setting Standards

Interpreting top-quark LHC measurements	S Four-quark operators:	
in the standard model effective field theory	$O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^\mu q_j) (\bar{q}_k \gamma_\mu q_l),$	(1)
In the standard-model enective new meory	$O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^\mu \tau^I q_j) (\bar{q}_k \gamma_\mu \tau^I q_l),$	(2)
	$O_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l),$	(3)
J. A. Aguilar Saavedra, ¹ C. Degrande, ² G. Durieux, ³	$O_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^\mu T^A q_j) (\bar{u}_k \gamma_\mu T^A u_l),$	(4)
F. Maltoni, ⁴ E. Vryonidou, ² C. Zhang ⁵ (editors),	$O_{ad}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{d}_k \gamma_{\mu} d_l),$	(5)
D. Barducci, ⁶ I. Brivio, ⁷ V. Cirigliano, ⁶ W. Dekens, ^{6,9} J. de Vries, ¹⁰	C. Englert, ¹¹ $O_{ad}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} T^A d_l),$	(6)
M. Fabbrichesi, ¹² C. Grojean, ^{5,15} U. Haisch, ^{2,14} Y. Jiang, ⁷ J. Kam	nemik, ^{10,10} $A = (\overline{u}_i \gamma^{\mu} u_j) (\overline{u}_k \gamma_{\mu} u_l),$ $O_{iu_i}^{(ijkl)} = (\overline{u}_i \gamma^{\mu} u_j) (\overline{u}_k \gamma_{\mu} u_l),$	(7)
T. Dlohn ¹⁸ F. Ding ² M. Buccoll ¹⁸ I. Sontiago ¹⁹ M. Schulzo ¹³ V.	$O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l),$	(8)
A Topero ²¹ M Trott ⁷ S Westhoff ¹⁸ C White ²² A Wulzer ^{2,23,24}	I Zupan ²⁵ $O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} T^A d_l),$	(9)
	[†] $O_{aud}^{1(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l),$	(10)
	${}^{\ddagger}O_{quqd}^{8(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l),$	(11)
	Two-quark operators:	
2 Guiding principles	${}^{\dagger}O^{(ij)}_{uarphi}=ar{q}_i u_j \widetilde{arphi} \ (arphi^{\dagger}arphi),$	(12)
	$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\overline{q}_i \gamma^{\mu} q_j),$	(13)
3 Operator definitions	$O^{3(ij)}_{\varphi q} = (\varphi^{\dagger} \overline{iD}^{I}_{\mu} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j}),$	(14)
	$O_{\varphi u}^{(ij)} = (\varphi^{\dagger} i \overline{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} u_j),$	(15)
4 Flavour assumptions	${}^{\ddagger}O^{(ij)}_{\varphi ud} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{u}_i\gamma^{\mu}d_j),$	(16)
4.1 Baseline $U(2) \times U(2) \times U(2)$, scenario	${}^{\ddagger}O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \tilde{\varphi} W_{\mu\nu}^I,$	(17)
4.1 Dasenne $O(2)_q \times O(2)_u \times O(2)_d$ scenario	${}^{\ddagger}O_{dW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I d_j) \varphi W_{\mu\nu}^I,$	(18)
4.2 Less restrictive $U(2)_{q+u+d}$ scenario	$ \overset{\dagger}{=} O_{uB}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} u_j) \tilde{\varphi} B_{\mu\nu}, $	(19)
1.2 More restrictive ten philie seconorie	$^*O_{uG}^{(3)} = (\bar{q}_i \sigma^{\mu\nu} T^{\alpha} u_j) \bar{\varphi} G^{\alpha}_{\mu\nu},$ Two-quark-two-lepton operators:	(20)
4.5 More restrictive <i>top-philic</i> scenario	$O_{l}^{l(ijkl)} = (\bar{l}_i \gamma^{\mu} l_i) (\bar{a}_k \gamma^{\mu} a_l),$	(21)
5 Example of FFT analysis strategy	$O_{l_{\alpha}}^{3(ijkl)} = (\bar{l}_i \gamma^{\mu} \tau^I l_i) (\bar{g}_k \gamma^{\mu} \tau^I g_l),$	(22)
5 Example of EF1 analysis strategy	$O_{l_{ij}}^{(ijkl)} = (\bar{l}_i \gamma^{\mu} l_i) (\bar{u}_k \gamma^{\mu} u_l),$	(23)
	$O_{eq}^{(ijkl)}=(ar{e}_i\gamma^\mu e_j)(ar{q}_k\gamma^\mu q_l),$	(24)
6 Summary and outlook	$O_{eu}^{(ijkl)} = (\bar{e}_i \gamma^\mu e_j)(\bar{u}_k \gamma^\mu u_l),$	(25)
	${}^{\ddagger}O_{lequ}^{1(ijkl)} = (\bar{l}_i e_j) \varepsilon (\bar{q}_k u_l),$	(26)
	${}^{\ddagger}O_{lequ}^{3(ijkl)} = (\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon \; (\bar{q}_k \sigma_{\mu\nu} u_l),$	(27)
	${}^{\ddagger}O_{ledq}^{(ijkl)} = (\bar{l}_i e_j)(\bar{d}_k q_l),$	(28)

SUMMARY

- Incredible progress on all fronts: LHC, detector experiments & theory
- Top quark physics is particularly thriving

SUMMARY

- Incredible progress on all fronts: LHC, detector experiments & theory
- Top quark physics is particularly thriving
- State-of-the-art OR near future:
 - single top, ttbar: NNLO QCD+ NLO EW in production and decay (NWA)
 single top, ttbar, ttbar+X: NLO with off-shell effects
 single top, ttbar, ttbar+X: NLO beyond SM,

Exploration of on-shell vs. loop sensitivity

SUMMARY

- Incredible progress on all fronts: LHC, detector experiments & theory
- Top quark physics is particularly thriving
- State-of-the-art OR near future:
 - single top, ttbar: NNLO QCD+ NLO EW in production and decay (NWA)
 single top, ttbar, ttbar+X: NLO with off-shell effects
 single top, ttbar, ttbar+X: NLO beyond SM,

Exploration of on-shell vs. loop sensitivity

- Future challenges:
 - Exp. uncertainties often smaller than theor. systematics, already now Improving precision on *ttbar* below 5% precision NNLO for *ttbar+X*: 2-loop and 1-loop-real corrections