Jet Substructure and Tagging in ATLAS

Chris Malena Delitzsch
University of Arizona
On behalf of the ATLAS Collaboration

LHCP 2018
4-9 June 2018
Introduction

- High centre-of-mass energy allows abundant production of $W/Z/H$ bosons and top quarks with $p_T >> m$
 - Decay products of initiating particle are collimated
 - → reconstruction as one single large-radius jet

- Large-R jet more susceptible to pile-up
 → grooming

- Use internal structure of jet to discriminate between initiating particle → tagging

- Substructure techniques heavily used in searches beyond SM but measurements are catching up!!

- Measurements of jet properties/structure crucial to constrain SM in new energy regimes and important test of perturbative calculations

- Cross-section measurements provide constraints on PDFs and α_s
A few basics before getting started

Trimming
JHEP 1002:084,2010

- Removes subjet (size R_{sub}) if:
 \[\frac{p_T^i}{p_T^\text{jet}} < f_{\text{cut}} \]
- Typical parameters in ATLAS:
 - $R_{\text{sub}} = 0.2$, $f_{\text{cut}} = 5\%$

N-subjettiness
JHEP 1103:015,2011

- Describes how likely it is that a jet is composed out of N subjets:
 \[
 \tau_N = \sum_k p_T, k \left(\min(\Delta R_{1,k}, R_{2,k}, \ldots, R_{N,k}) \right)^\beta \\
 \sum_k p_T(R_0)^\beta
 \]
- Powerful discrimination:
 τ_2/τ_1 (W/Z), τ_3/τ_2 (top)

Soft-drop
JHEP 1405 (2014) 146

- Preferred by theory community, calculation available at NNLL
- Recluster constituents of large-R jet with C/A algorithm
- Go through C/A clustering history and check soft drop condition:
 \[
 \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0} \right)^\beta
 \]

Jet mass

- Calculated from jet constituents
 \[
 m^2 = \left(\sum_i E_i \right)^2 - \left(\sum_i \vec{p}_i \right)^2
 \]

4-9 June 2018
Jet Substructure and Tagging in ATLAS
Soft drop mass measurement

- Soft-drop mass predicted at NLO + NLL and LO + NNLL accuracy
- Mass measurement performed with 32.9 fb\(^{-1}\) of 13 TeV \(pp\) collisions (arXiv:1711.08341)

Event selection

- \(\text{anti-}k_t\ R = 0.8\) jets
- \(p_T,1 > 600\ \text{GeV}, \frac{p_T,1}{p_T,2} < 1.5\)
- \(z_{\text{cut}} = 0.1, \beta = \{0, 1, 2\}\)

Dominating systematic uncertainties

- Calorimeter cell cluster energy scale
- Modelling (PYTHIA vs. SHERPA)
Soft drop mass measurement

- Soft-drop mass predicted at NLO + NLL and LO + NNLL accuracy
- Mass measurement performed with 32.9 fb\(^{-1}\) of 13 TeV pp collisions (arXiv:1711.08341)

Event selection

- anti-\(k_t\) \(R = 0.8\) jets
- \(p_T,1 > 600\) GeV, \(p_T,1/p_T,2 < 1.5\)
- \(z_{\text{cut}} = 0.1\), \(\beta = \{0, 1, 2\}\)

Dominating systematic uncertainties

- Calorimeter cell cluster energy scale
- Modelling (Pythia vs. Sherpa)

Diagram

- **Resummation**
- **Relative Uncertainty**
- **MC/Data**
- **Detector/Particle**
- **Total uncertainty**
- **MC statistical error**
- **Data statistical error**
- **QCD Modeling**
- **Nonclosure**
- **Cluster angular resolution**
- **Cluster energy scale shift**
- **Cluster energy scale smearing**
- **Pileup modeling**

ATLAS
\[\bar{\sigma} = 13\text{ TeV}, 32.9\text{ fb}\^{-1}\]
- anti-\(k_t\) \(R = 0.8\), \(p_T^{\text{lead}} > 600\) GeV
- Soft drop \(\beta = 0\), \(z_{\text{cut}} = 0.1\)
Soft drop mass measurement - Results

- Iterative Bayesian unfolding to particle-level
- $\beta = 2$: less soft-radiation removed compared to $\beta = 0$
- Parameter of interest: $\rho = \frac{m_{\text{soft drop}}}{p_T^{\text{ungroomed}}}$

\[
\log_{10} \left(\frac{m_{\text{soft drop}}}{p_T^{\text{ungroomed}}} \right)
\]

ATLAS
$\sqrt{s} = 13$ TeV, 32.9 fb$^{-1}$
\begin{itemize}
 \item anti-k, $R=0.8$, $p_T^{\text{lead}} > 600$ GeV
 \item Soft drop, $\beta = 0$, $z_{\text{cut}} = 0.1$
 \item Soft drop, $\beta = 2$, $z_{\text{cut}} = 0.1$
\end{itemize}

Data
- Pythia 8.1
- Sherpa 2.1
- Herwig++ 2.7
- LO+NNLL, large NP effects
- LO+NLL
- NLO+NLL
- NLO+NLL+NP

ATLAS
$\sqrt{s} = 13$ TeV, 32.9 fb$^{-1}$
\begin{itemize}
 \item anti-k, $R=0.8$, $p_T^{\text{lead}} > 600$ GeV
 \item Soft drop, $\beta = 2$, $z_{\text{cut}} = 0.1$
\end{itemize}

Data
- Pythia 8.1
- Sherpa 2.1
- Herwig++ 2.7
- LO+NNLL, large NP effects
- LO+NLL
- NLO+NLL
- NLO+NLL+NP

4-9 June 2018
Jet Substructure and Tagging in ATLAS
Soft drop mass measurement - Results

- Iterative Bayesian unfolding to particle-level
- $\beta = 2$: less soft-radiation removed compared to $\beta = 0$
- Parameter of interest: $\rho = \frac{m_{\text{soft drop}}}{p_{\text{T,ungroomed}}}$
- Non-perturbative effects large for $\log \rho^2 < -3.7$ (small angle, soft emission)
 - NP effects play larger role for $\beta = 2$
Soft drop mass measurement - Results

- Iterative Bayesian unfolding to particle-level
- $\beta = 2$: less soft-radiation removed compared to $\beta = 0$
- Parameter of interest: $\rho = \frac{m_{\text{soft drop}}}{p_T^{\text{ungroomed}}}$
- Non-perturbative effects large for $\log \rho^2 < -3.7$ (small angle, soft emission)
- NP effects play larger role for $\beta = 2$
- Resummation region for $-3.7 < \log \rho^2 < -1.7$
Soft drop mass measurement - Results

- Iterative Bayesian unfolding to particle-level
- $\beta = 2$: less soft-radiation removed compared to $\beta = 0$
- Parameter of interest: $\rho = \frac{m_{\text{soft drop}}}{p_{\text{ungroomed}}}$
- Non-perturbative effects large for $\log \rho^2 < -3.7$ (small angle, soft emission)
 - NP effects play larger role for $\beta = 2$
- Resummation region for $-3.7 < \log \rho^2 < -1.7$
- Fixed, higher-order corrections for $\log \rho^2 > -1.7$ (large angle gluon emission)
Jet mass measurement in \(pp \) and Pb+Pb collisions

- Measurement of \(m/\pT \) in \(pp \) and PbPb collisions at \(\sqrt{s} = 5.02 \) TeV

 ATLAS-CONF-2018-014

- Jet mass measurement in PbPb gives insight in the modification of the jet while passing through quark-gluon plasma

- Jets are reconstructed with anti-\(k_t \) \(R = 0.4 \) algorithm from \(0.1 \times 0.1 \) towers

 Underlying event is subtracted from towers before calibrations are applied
Jet mass measurement in Pb+Pb collisions

- **Nuclear modification factor** R_{AA}:
 - Quantifies modification of jet yields PbPb collisions relative to pp

\[
R_{AA}(m/p_T, p_T) = \frac{1}{N_{\text{evt}} \frac{d(m/p_T)}{d(p_T)}} \frac{d\sigma_d^{\text{Pb+Pb}}}{d\sigma_d^{\text{jet}}}(p_T) \frac{\langle T_{\text{AA}}(m/p_T, p_T) \rangle}{\langle T_{\text{AA}} \rangle} \]

- $\langle T_{\text{AA}} \rangle$: nuclear thickness function
- R_{AA} measured for various p_T and centralities (based on E_T in FCal)
- Modification factor is relatively flat in m/p_T but shows suppression of jets in PbPb collisions
Search for SM Higgs production in association with $t\bar{t}$

- Search for $t\bar{t}H$ production performed with 36.1 fb$^{-1}$ of 13 TeV pp collisions

- $t\bar{t}H$ process allows for direct measurement of the top quark Yukawa coupling

- Search designed for $H \rightarrow b\bar{b}$ decay and for dilepton & lepton+jets decay channel of top quark pair

- Search divided in different signal regions based on number of jets and number of b-tagged jets

- Dedicated boosted channel in analysis
 - Decay of top quark and Higgs boson each reconstructed as one anti-k_t $R = 1.0$ jet
 - Inputs are anti-k_t $R = 0.4$ jets \rightarrow reclustering
 - Higgs candidate: two subjets that are b-tagged
 - Top candidate:
 - one subjet that is b-tagged
 - at least one other subjet that is not b-tagged

Bkg composition

- $t\bar{t} +$ light
- $t\bar{t} + \geq 1c$
- $t\bar{t} + \geq 1b$
- $t\bar{t} + V$
- Non-$t\bar{t}$
Boosted $t\bar{t}H$ - multivariate analysis techniques

- Eight variables are combined in BDT
 - ΔR between objects, Higgs mass candidate, b-tagging weights

- Top three variables with highest discrimination:
 - k_T splitting scale of top candidate: $\sqrt{d_{12}}$
 - ΔR between top and Higgs
 - ΔR between top and additional b-jet

- Discriminants of various analysis categories combined in profile likelihood fit

- Best-fit μ value:
 $\mu = 0.84 \pm 0.29$ (stat.) $+0.57$ (syst.)

- Observed data consistent with both the bkg-only hypothesis and with the SM $t\bar{t}H$ production
Boosted $t\bar{t}$ differential cross-section at $\sqrt{s} = 13$ TeV

- Theoretical calculations in the TeV scale range still present large uncertainties
- Measurement of boosted $t\bar{t}$ cross-section targets this region of phase space
 - Performed in the all-hadronic channel using 36.1 fb$^{-1}$ ([arXiv:1801.02052])

Top quark candidate
- anti-k_t $R = 1.0$ trimmed jets
- $p_T,_{j1(j2)} > 500$ (350) GeV
- One associated small-R b-tagged jet
- Top tagged (based on mass and τ_{32})

Background estimation
- MC: $t\bar{t}$ (non all-had), single top & $t\bar{t}+X$
- Data-driven multijet bkg estimate
 - 16 regions defined based on number of top tags and b-tags
Boosted $t\bar{t}$ differential cross-section - Results I

- Detector-level distribution unfolded to particle-level fiducial phase-space
- Differential and inclusive fiducial cross-section measured
- Large-R jet energy scale & top tagging uncertainties dominate

$$\sigma_{\text{fid}} = 292 \pm 7 \text{ (stat)} \pm 76 \text{ (syst)} \text{ fb}$$
Boosted $t\bar{t}$ differential cross-section - Results II

- $\chi^{t\bar{t}} = \exp 2|y^*|$, $y^* = \frac{1}{2}(y^{t,1} - y^{t,2})$
- Sensitive to processes not included in Standard Model at low $\chi^{t\bar{t}}$ values
- $y_B^{t\bar{t}} = \frac{1}{2}(y^{t,1} + y^{t,2})$
- Longitudinal motion of the $t\bar{t}$ system in the lab. frame is sensitive to PDFs

- $p_{out}^{t\bar{t}}$
- Out-of-plan momentum which is sensitive to additional radiation in the matrix element process

- Data
 - POWHEG+Py8
 - POWHEG+H7
 - MG5_aMC@NLO+Py8
 - Sherpa 2.2.1
- Stat. Unc.
- Syst. Unc.

ATLAS

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

Fiducial phase space

1. $1/\sigma \cdot d\sigma / d\chi^t$
2. $1/\sigma_0 \cdot d\sigma_0 / d|p_{out}|$
3. $1/\sigma \cdot d\sigma / dy^t$

4-9 June 2018

Jet Substructure and Tagging in ATLAS
How to improve these measurements in the future

- Big effort on-going to define a new jet collection in conjunction with constituent-level pile-up suppression
- Large-R jet and modelling uncertainties dominating in many measurements
 - Suite of *in situ* calibration techniques deployed for large-R jets as for small-R
 - Ongoing work to connect *in situ* techniques on entire jets with low-level studies of jet constituents
- Improving tagging
 - Use state-of-the-art tagging techniques such as jet images for quark-gluon ID
 - Scale factors to correct for tagger efficiency differences in data and MC

Summary

- Jet substructure techniques are now mainstream tools applied in QCD measurements, particle ID in searches for rare SM processes and new physics.

- Jet substructure and tagging techniques are an exciting field with significant ongoing development.

- The usage of substructure techniques allows us to explore higher p_T regimes that were not probed before to constrain the SM.

- Measurements are mostly limited by experimental uncertainties related to the large-R jet kinematics and theory uncertainties.
 - Expect significant reduction from *in situ* calibration techniques for the jet p_T.
 - New *in situ* calibration techniques like forward folding or bottom up unc. used to understand jet mass scale uncertainties but more work needed.
 - Work needs to be done to reduce modelling uncertainty dependence, communication with theory community is crucial.
Backup
Eight variables are combined in BDT
- ΔR between objects, Higgs mass candidate, b-tagging weights
- Top three variables with highest discrimination:
 - k_T splitting scale of top candidate: $\sqrt{d_{12}}$
 - ΔR between top and Higgs
 - ΔR between top and additional b-jet