Jet substructure and tagging at LHCb

LHCP 06-06-2018 Bologna, Italy

Lorenzo Sestini
Università di Padova and INFN
On behalf of the LHCb collaboration
LHCb: a general purpose forward detector

JINST 3 (2008) S08005

- **Forward region**: unique acceptance within the LHC experiments ($2 < \eta < 5$).

- **Momentum resolution**: 0.4% at 5 GeV and 0.6% at 100 GeV.

- **Muon ID efficiency**: 97% with 1-3% $\mu \rightarrow \pi$ mis-identification.

- **Electron reconstruction**: bremsstrahlung recovery and well-measured direction.

- **Excellent vertex reconstruction**: tagging of b and c jets.

LHCb demonstrated its capability in EW and jet physics

General purpose forward detector

17/11/08

Lorenzo Sestini
Jet reconstruction algorithm

Particle Flow
- Tracks and calorimeter clusters are selected as inputs

Anti-kt clustering
- Inputs are used to form jets of a given cone radius $R=0.5$

Jet four-momentum
- $E_{jet} = \sum_i E_i$
- $\vec{p}_{jet} = \sum_i \vec{p}_i$

Jet energy correction
- The jet energy is corrected for detector inefficiencies (calibrated on simulation)

Energy resolution of final jets
- $\delta E/E \approx 10-16\%$ in $20-100$ GeV p_T range.

$Z \rightarrow \mu\mu + \text{jet}$

$\Delta \phi(Z,j) \approx \pi$

$LHCb$ simulation
- $2 < \eta_{jet} < 4.5$

$LHCb$ data
- Simulation
Jet substructure

Study of jet substructure at LHCb

Secondary Vertices for b-jets and c-jets identification

J/ψ in jets for QCD studies
Jet tagging at LHCb

JINST 10 (2015) P06013

- The jet tagging system takes advantage of LHCb features → precise vertex reconstruction!

- As first step **Secondary Vertices** are reconstructed using tracks.

- A jet is identified to be generated from a **b** or **c** quark (**b-jet** or **c-jet**) if a **Secondary Vertex** is reconstructed within the jet cone ($\Delta R < 0.5$).
Jet tagging at LHCb

JHEP 01 (2014) 033

- Two **Boosted Decision Trees** (BDT) are used to identify b and c jets.

- Some observables in input to the BDTs:
 - SV mass
 - Fraction of jet p_T taken by the SV
 - Flight distance χ^2
 - SV corrected mass

\[M_{\text{corr}} = \sqrt{M_{SV}^2 + p_{\text{miss}}^2 + p_{\text{miss}}} \]

BDT(bc|udsg)

To separate **heavy flavour** jets from **light** jets

BDT(b|c)

To separate **b-jets** from **c-jets**
Jet tagging at LHCb

JHEP 01 (2014) 033

- Training samples of **b-jets**, **c-jets** and **light jets** are obtained from the Monte Carlo simulation.

- A good discrimination power is achieved!
• Tagging efficiencies are measured in data (Run I).

• Events with a jet and a probe back-to-back to the jet in the azimuthal plane are selected.

• The probe identifies the jet flavour

 - B+jet (b enriched)
 - D+jet (b and c enriched)
 - μ(displaced)+jet (b and c enriched)
 - μ(isolated and high P_T)+jet (light jets enriched)
Jet tagging at LHCb

- Yields of b, c and light jets prior to apply the SV-tag are measured by fitting the distribution of the χ^2_{IP} associated to the highest p_T track in the jet.

- Yields of b, c and light jets after applying the SV-tag are measured by fitting the 2-dimensional distribution of the BDTs (next slide).

- Two-dimensional templates are obtained from simulation.
Jet tagging at LHCb

JHEP 01 (2014) 033

BDT(bcludsg)

BDT(bcludsg)

BDT(bl)

BDT(blc)

LHCb data

LHCb fit

D+jet

candidates

LHCb

data

b

c

udsg

D+jet

candidates

LHCb

data

b

c

udsg

D+jet
Jet tagging at LHCb

JHEP 01 (2014) 033

- Efficiencies obtained with: \(\epsilon = \frac{N(\text{pass})}{N(\text{tot})} \) from BDTs fit

- Probability for a \textit{b-jet} to be selected \(\sim 65\% \)

- Probability for a \textit{c-jet} to be selected \(\sim 25\% \)

- Probability to wrongly select a \textit{light jet} \((g,u,d,s) \) \(\sim 0.3\% \)

- Uncertainty due to the limited statistics of the data samples and to the modeling of the templates
Jet tagging at LHCb
JHEP 01 (2014) 033

- Data/simulation efficiencies scale factors:

- Uncertainty due to the limited statistics of the data samples and to the modeling of the templates, in the order of ~10%
Jet tagging at LHCb

- Many measurements have been performed thanks to the jet tagging!
- The most recent ones:
 - $Z \rightarrow b \bar{b}$ cross section in the forward region (dedicated talk in Electroweak session on Friday)
 - $t \bar{t}$ production in the $t \bar{t} \rightarrow \mu e b$ final state (dedicated talk in Top session tomorrow by D. Lucchesi)
Study of J/ψ in jets

- Measurement of J/ψ production in jets can be used as probe of QCD.
 - LHCb measured $z(J/\psi) = p_T(J/\psi)/p_T(\text{jet})$ for prompt J/ψ and for those produced in b-hadron decays, using the 13 TeV dataset (1.4 fb$^{-1}$).
 - Jets must have $p_T > 20$ GeV and $2.5 < \eta < 4.0 \rightarrow \text{Reconstructed at trigger level!}$
 - $J/\psi \rightarrow \mu^+\mu^-$ in the jet must have $p_T(\mu) > 0.5$ GeV and $p(\mu) > 5$ GeV

![Graph showing di-muon mass fit](image)

Di-muon mass fit in one particular $p_T(\text{jet})$ and $z(J/\psi)$ bin, used to determine the J/ψ yield
A fit to the pseudo decay time $\tilde{t} = \lambda \frac{m(J/\psi)}{p_L(J/\psi)}$ is performed in $[p_T(jet),z(J/\psi)]$ bins to determine the prompt and displaced J/ψ yields.

- LHCb
 $\sqrt{s} = 13$ TeV
- Data
- $20 < p_T(jet) < 30$ GeV
- $0.4 < z(J/\psi) < 0.5$

- LHCb
 $\sqrt{s} = 13$ TeV
- $20 < p_T(jet) < 30$ GeV
- $0.4 < z(J/\psi) < 0.5$
The measured $z(J/\psi)$ distributions are corrected for the selection efficiencies and unfolded for the detector response.

Measurements are compared with theoretical predictions:

\[\sqrt{s} = 13 \text{ TeV} \]

$b \to J/\psi$ Displaced case
• Measurements are compared with theoretical predictions: **discrepancies in the prompt case trigger a discussion among theorists!**
Future prospects and conclusions

- At **LHCb** the jet substructure has been studied for the identification of b- and c- jets (secondary vertices) and for QCD studies (J/ψ in jets).

- Thanks to LHCb unique features an **excellent heavy flavour tagging system** has been developed.

- **Work is in progress to improve jet tagging performances:** we are considering to use all the jet constituents, not only the secondary vertices.

- **We are studying the possibility to tag merged bb and cc fat jets at LHCb:**
 - it will be an important tool for low mass resonances searches
 - it can be used to study the b-pairs production mechanism (i.e. gluon splitting)
Backup slides
Jet detection at LHCb

Jet reconstruction inputs:

- Tracks
- Calorimeter clusters
- Metastable particles (like K_s)
Tracking system

Tracking at LHCb: silicon microstrip (VELO, Inner Tracker), drift tubes (Outer tracker)

VErtex LOcator (VELO)

21 stations → (r,φ) coordinates

Tracking stations

4 stations → (x,y) coordinates

The momentum of charged particles is determined by measuring the curvature of the trajectory in the magnetic field
Calorimeters

Electromagnetic calorimeter
- e, γ, π⁰ produce electromagnetic showers in lead layers
- showers are detected by layers of scintillating fibers

Hadronic calorimeter
- K, π and other hadrons produce hadronic showers in iron layers
- showers are detected by layers of scintillating tiles

Limitations due to saturation

Energy resolution
\[\frac{\sigma_E}{E} = 10\% \pm 1\% \]
\[\frac{\sigma_E}{E} = 69\% \pm 10\% \]

Inputs for jets reconstruction
- Clusters isolated from tracks (neutral particles)
- Excesses of energy nearby tracks (neutral recovery)

Not optimal for jets physics!
LHCb performance

Excellent IP resolution
→ very important for SV reconstruction and tagging

Tracks momentum resolution

Electromagnetic calorimeter

\[\sigma_E \frac{E}{\sqrt{E}} = 10\% \pm 1\% \]

Hadronic calorimeter

Energy resolution
\[\sigma_E \frac{E}{\sqrt{E}} = 69\% \pm 10\% \]

Limitations due to saturation

Calorimeter clusters in input to jets reconstruction

Clusters isolated from tracks
(neutral particles)

Excesses of energy nearby tracks
(neutral recovery)