

Soft probes

Soft probes ▶ low transverse momentum, p_T < few GeV/c ▶ non-perturbative phenomenological models, statistical treatment, effective theories...

Bulk particle production in different colliding systems

Soft probes

Soft probes ▶ low transverse momentum, p_T < few GeV/c ▶ non-perturbative phenomenological models, statistical treatment, effective theories...

Bulk particle production in different colliding systems

Soft probes

Soft probes ▶ low transverse momentum, p_T < few GeV/c ▶ non-perturbative phenomenological models, statistical treatment, effective theories...

Bulk particle production in different colliding systems

Particle production

Study charged particle production varying collision systems and energies to shed light on particle production mechanism

[ALICE Coll., arXiv:1805.04432]

Particle production

Study charged particle production varying collision systems and energies to shed light on particle production mechanism

[ALICE Coll., arXiv:1805.04432]

Stronger rise with √s for A-A particle production per participant pair than for p-A and pp collisions

Particle spectra

Harder spectra in central A-A collisions

let collective expansion (radial flow) of medium in local thermodynamic equilibrium

Particle spectra

 10^{4}

10³

 10^{2}

10

 10^{-1}

 10^{-2}

ALICE Preliminary

p+p

pp, $\sqrt{s} = 13 \text{ TeV}$

 $1 (\times 2^{10})$

V0M multiplicity classes

Harder spectra in central A-A collisions collective expansion (radial flow) of medium in local thermodynamic equilibrium

II (× 2⁹)

At low $p_T \triangleright$ hydrodynamics expansion of the fireball At intermediate $p_T \triangleright$ quark recombination

At low p_T hydrodynamics expansion of the fireball At intermediate p_T quark recombination

qualitatively similar behaviour in smaller systems

Depletion at low p_T , enhancement at intermediate p_T

- smooth trend vs. multiplicity across different colliding systems
- common driving mechanism?

Strangeness

Enhanced strange particle production in A-A relative to pp, p-A collision increasing with s quark content QGP signature [Rafelski & Muller, PRL 48 (1982) 1066]

Strangeness

Enhanced strange particle production in A-A relative to pp, p-A collision increasing with s quark content QGP signature [Rafelski & Muller, PRL 48 (1982) 1066]

Identical particle chemistry for fixed multiplicity independently of energy or collision system strangeness production driven by final-state multiplicity

Multiplicity matters

Multiplicity matters

Testing QCD models

Test QCD-inspired models

PYTHIA8 (Color Reconnection) ruled out

DIPSY (Color ropes) original version cannot simultaneously reproduce the observed enhancement for all measured hadrons

EPOS LHC (Core-corona approach) describes the trend only qualitatively

fail to describe all available data

Testing QCD models

tool to constraint models

Summary

Observations that were attributed to the creation of a dense medium in thermal and kinematic equilibrium in heavy ion collisions are observed in high multiplicity pp and p-A collisions

Are QGP droplet formed in smaller systems? Do we need a thermalized and equilibrated medium to explain the observed features?

Evidence of a continuous transition across colliding systems pp p-A A-A versus final state multiplicity at different vs

Can QCD inspired model provide microscopic descriptions to explain the observed features (string shoving, rope formation)?

LHCP

Particle spectra

Particle spectra

Ratio to INEL>0 spectra property spectra evolution seems to be driven by no. of constituent quarks at high p_T (baryon-meson grouping)

Yield ratios

- strangeness enhancement with multiplicity
- p/π ratio constant
- hyperon/π enhancement connected to strangeness content

Hadronization

Hadronization

PRL 111(2013) 22301

- baryon/meson enhanced in central A-A collisions at intermediate p_T
- hydrodynamics at low p_T
- coalescence+fragmentation or hydrodynamics+jets (EPOS) able to reproduce data

T.Pierog et al., Phys. Rev. C 92, 034906 (2015)

0

ALI-DER-64786

Hadronization

 $p_{_{\rm T}} \, ({\rm GeV}/c)$

V.Minissale et al., Phys.Rev. C92 (2015) no.5, 054904

p and φ have similar p_T spectra in central A-A collisions ▶ expected from hydrodynamic mass dependent radial flow BUT also reproduced by models including recombination

Strangeness

ALI-PUB-78357

