Future lepton colliders theory indirect probes with global EFTs in the top and Higgs sectors

Gauthier Durieux (DESY)

1704.02333, GD, C.Grojean, J.Gu, K.Wang

1711.03978, S.Di Vita, GD, C.Grojean, J.Gu, Z.Liu, G.Panico, M.Riembau, T.Vantalon

GD, M.Perelló, M.Vos, C.Zhang, to appear (see proceedings 1708.09849)

GD, O.Matsedonskyi, to appear

LHCP 2018 Bologna, 8 June

Hypothetical timeline

A new lepton collider could run by 2030 in Asia, by 2040 at CERN.

Physics

- systematics-limited Z-pole meas.
 (up to 10¹² Z's vs. 10⁷ at LEP)
- up to 10⁸ W pairs (mass, triple gauge coup., EW param.)
- millions of clean h's (up to permil coupling meas.)
- millions of tops (clean mass meas., EW couplings)
- thousands of tth
- hundreds of Higgs pairs
 - \rightarrow precision measurements
 - \rightarrow indirect probes of heavy NP
 - \rightarrow weakly coupled NP

The standard model effective field theory

systematically parametrizes the theory space in direct vicinity of the SM

- based on SM fields and symmetries
- in a low-energy limit
- systematic and renormalizable when global

(...) if one writes down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, (...) the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry. [Phenomenological Lagrangians, Weinberg '79]

The standard model effective field theory

systematically parametrizes the theory space in direct vicinity of the SM

Global Higgs analysis

- Higgs-related processes $e^+e^- \rightarrow hZ, W^+W^-$ (incl. distr.), $h\nu\bar{\nu}, ht\bar{t}, h \rightarrow ZZ^*, WW^*, \gamma\gamma, \gamma Z, gg, b\bar{b}, c\bar{c}, \tau^+\tau^-, \mu^+\mu^-$
- 13 parameters in the Higgs basis of dim-6 operators
- [LHCHXSWG-INT-2015-001]

[1704.02333]

- one-sigma sensitivities:

- \rightarrow order of magnitude improvement wrt LHC + y_c measurement \rightarrow LHC helps for $\bar{c}_{\gamma\gamma}$, δy_{μ} , and δy_t (below 500 GeV!)
- \rightarrow importance of complementary measurements (energies, pol., distr.)

Higgs self-coupling at low energies

[1711.03978]

- NLO sensitivity (finite and gauge-invariant subset)
- · dominated by $e^+e^- \rightarrow hZ$ threshold [McCullough '13]

 $\Sigma_{\rm NLO} / \Sigma_{\rm NLO}^{\rm SM} - 1 \simeq (C_1 - 0.0031) \ \delta \kappa_{\lambda} + ...$

 \rightarrow few permil hZ measurement naively implies a few 10% constraint

 Marginalizing over 12 other params, 350 GeV run necessary without LHC

• second LHC minimum already resolved by a 250 GeV run

Higgs self-coupling at high energies

ILC

- perfect complementarity between 500 GeV and 1 TeV runs
- \cdot both individual and global $\Delta\chi^2{=}1$ limits $\sim 20\%$

CLIC

- · missing $e^+e^- \rightarrow Zhh$ to constrain positive $\delta \kappa_{\lambda}$
- · exploiting m_{hh} instead [Contino et al]
- \cdot both individual and global $\Delta\chi^2\!\!=\!\!1$ limits $\sim-20,+30\%$

Higgs self coupling

summary

- \cdot robust indirect constraints at low energy require a global analysis $\rightarrow \sim 75\%$ precision with 0.2 ab⁻¹ at 350 GeV, $\sim 40\%$ with 1.5 ab⁻¹
- $\cdot\,$ single-Higgs measurements could affect direct high-energy determinations $\to\sim20\%$ precision with 500 GeV + 1 TeV runs

linearised EET

Linear EFT robustness

9

Linear EFT robustness

Interpretation in composite Higgs models

[GD,Matsedonskyi]

The Higgs is a *pion* of a new strongly coupled sector, naturally lighter than other resonances.

- \cdot typical composite coupling and mass: $g_{\star},~m_{\star}$
- · top mixings with composite resonances: ϵ_t , ϵ_Q

 \star equally composite t_R & Q $(\epsilon_t = \epsilon_Q \simeq \sqrt{rac{y_t}{g_\star}})$

 \star fully composite t_R

five-sigma discovery reach filled: pessimistic dashed: optimistic

CLIC-like scenario $500 \text{ fb}^{-1} \text{ at 380 GeV}$ $1.5 \text{ ab}^{-1} \text{ at 1.4 TeV}$ $3 \text{ ab}^{-1} \text{ at 3 TeV}$ $P(e^+e^-) = (0, \pm 0.8)$ Future lepton colliders theory

Future lepton collider are ideal machines for

- · precision measurements,
- · indirect probes of heavy NP,
- \cdot direct probes of weakly coupled NP.

Global EFT analyses can spot correlated deviations in precisely measured observables

Global constraints on Higgs and top operator coefficients would be improved by an order of magnitude.

Discovery reach would extend to NP scales of order 10 TeV.

Backup

Statistically optimal observables

minimize the one-sigma ellipsoid in EFT parameter space

(joint efficient set of estimators, saturating the Rao-Cramér-Fréchet bound: $V^{-1} = I$, just like MEM)

For small C_i , with a phase-space distribution $\sigma(\Phi) = \sigma_0(\Phi) + \sum_i C_i \sigma_i(\Phi)$, the stat. opt. obs. are the average values of $O_i(\Phi) = \sigma_i(\Phi)/\sigma_0(\Phi)$.

e.g.
$$\sigma(\phi) = 1 + \cos(\phi) + C_1 \sin(\phi) + C_2 \sin(2\phi)$$

1. asymmetries: $O_i \sim \text{sign}\{\sin(i\phi)\}$
2. moments: $O_i \sim \sin(i\phi)$
3. statistically optimal: $O_i \sim \frac{\sin(i\phi)}{1 + \cos\phi}$

Previous applications in $e^+e^- \rightarrow t \bar{t}$, on different distributions: [Grzadkowski, Hioki '00] [Janot '15] [Khiem et al '15]

area ratios 1.9 : 1.7 : 1

Global determinant parameter

[GD, Grojean, Gu, Wang, '17]

In a *n*-dimensional Gaussian fit, with covariance matrix V, GDP $\equiv \sqrt[2n]{\det V}$ provides a geometric average of the constraints strengths.

Interestingly, GDP ratios are operator-basis independent!

- $\cdot \,$ as the volume scales linearly with coefficient normalization
- · as the volume is invariant under rotations
- \implies conveniently assess constraint strengthening.

$\mathsf{Up}\mathsf{-}\mathsf{sector}\ \mathsf{SMEFT}$

[Grzadkowski et al '10]

 \sim

Two-quark-two-lepton operators: