

# Status of CLIC and ILC

LHCP Bologna

Steinar.Stapnes@CERN.CH

on behalf of the CLIC and ILC accelerator communities

## Key parameters ILC and CLIC

| Parameter         | Symbol [unit]                                          | ILC                   | ILC                   | CLIC   | CLIC   |
|-------------------|--------------------------------------------------------|-----------------------|-----------------------|--------|--------|
| CMS energy        | E <sub>cm</sub> [GeV]                                  | 250                   | 500                   | 380    | 3000   |
| Luminosity        | L [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 1.35                  | 1.8                   | 1.5    | 6      |
| Gradient          | G [MV/m]                                               | 31.5                  | 31.5                  | 72     | 100    |
| Repetition rate   | f <sub>r</sub> [Hz]                                    | 5                     | 5                     | 50     | 50     |
| Bunches per train | n                                                      | 1312                  | 1312                  | 352    | 312    |
| Particles/bunch   | N [10 <sup>9</sup> ]                                   | 20                    | 20                    | 5.2    | 3.72   |
| Bunch length      | σ <sub>z</sub> [μm]                                    | 300                   | 300                   | 70     | 44     |
| Energy spread     | [%]                                                    | 0.1-0.2               | 0.1-0.2               | 0.35   | 0.35   |
| Emittances        | ε <sub>x,y</sub> [nm]                                  | 5x10 <sup>3</sup> /35 | 5x10 <sup>3</sup> /35 | 950/30 | 660/20 |
| IP beam size      | σ <sub>x,y</sub> [nm/nm]                               | 520/8                 | 474/6                 | 149/3  | 40/1   |
| Beta-functions    | b <sub>x,y</sub> [mm]                                  | 13/0.41               | 22/0.48               | 8/0.1  | 6/0.07 |

Compiled by Daniel Schulte

### Energy scales





#### ILC Candidate Location: Kitakami, Tohoku



LHCP Bologna, Steinar Stapnes

8 June 2018

## ILC Layout





| Parameters                        | Value                                                  |
|-----------------------------------|--------------------------------------------------------|
| C.M. Energy                       | 500 GeV                                                |
| Peak luminosity                   | 1.8 x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| Beam Rep. rate                    | 5 Hz                                                   |
| Pulse duration                    | 0.73 ms                                                |
| Average current                   | 5.8 mA (in pulse)                                      |
| E gradient in SCRF acc.<br>cavity | 31.5 MV/m +/-20%<br>Q <sub>0</sub> = 1E10              |



#### ILC: SCRF



#### Ultra-high $Q_0$ (10<sup>10</sup>)

Almost zero power (heat) in cavity walls (in SC RF the main efficiency issues related to fill factors and cryogenics) Standing wave cavities with low peak power requirements Long beam pulse (~1 ms) - favorable for feed-backs within the pulse train

#### Low impedance

Beam generates low "wakefields"

Relatively large structures (1.3 GHz)



### Worldwide SRF Collaboration





### The European X-FEL



#### **Progress:**

...

2013: Construction started

2016: E- XFEL Linac completion 2017: E-XFEL beam start

> 1.3 GHz / 23.6 MV/m 800+4 SRF acc. Cavities 100+3 Cryo-Modules (CM) : ~1/10 scale to ILC-ML







### SRF Cavity Performance



ILC goal: 31.5 MV/m

FEL goal: 24 MV/m

Achieved: 29.8 MV/m



#### After Retreatment: E-usable: 29.8 ± 5.1 [MV/m]

(RI): E usable 31.2 ± 5.2 [MV/m]), w/ 2nd EP
(EZ): E usable 28.6 ± 4.8 [MV/m]), w/ BCP (instead of 2nd EP)

A. Yamamoto, 171106



14

## Recent ILC Development



Cost saving studies, e.g.

L. Evans A. Yamamoto

- Coupler design 1-2%
  - Cavity material 2-3%
- No more hydrofluoric acid for chemical treatment 1-2%
- Higher gradient and more efficient cavities 4-5%

• ...

Modified exposure to nitrogen (from FNAL) Before: doping with few minutes at 800 °C Now: a day or so at 120 °C Nitrogen infusion appears very promising

- Increase in gradient
- Increase in Q<sub>0</sub>



## ILC since the TDR in 2012-13: Technical focus and changes





Site specific studies

Technical developments for most accelerator systems - high Q improvements for example

E-XFEL at DESY successfully constructed and put into operation – a key technology demonstration

## ILC since the TDR in 2012-13: Technical focus and changes





8 June 2018

Site specific studies

Technical developments for most accelerator systems - high Q improvements for example

E-XFEL at DESY successfully constructed and put into operation – a key technology demonstration



|                       | Collision<br>E.<br>[GeV] | Tunnel<br>Space<br>[GeV] | Value Total<br>(MILCU<br>in 2012) | Reductio<br>n<br>[%] | же жила<br>стат лаа<br>станасска лаа<br>станасска лаа<br>The International Linear Collider<br>Machine Staging Report 2017 |
|-----------------------|--------------------------|--------------------------|-----------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| TDR                   | 250/250                  | 500                      | 7,980                             | 0                    | Addendum to the International Linear Collider Technical Design Report published in 2013                                   |
| TDR update            | 250/250                  | 500                      | 7,950                             | -0.4                 |                                                                                                                           |
| Option A              | 125/125                  | 250                      | 5,260                             | -34                  |                                                                                                                           |
| Option A'<br>(w/ R&D) | 125/125                  | 250                      | 4,780<br>w/ R&D<br>success        | -40                  | Linear Collider Collaboration   October 2017<br>Editors Lyn Eines aud Discolar Michaene                                   |

Recent proposal to start with an initial energy of 250 GeV (<u>physics impact report</u>) – key issues:

- Higgs precision depends significantly on HiLumi performance and theory assumptions (<u>link</u>)
- Below ttbar threshold
- Reduced search capabilities

Nevertheless, provides impressive precision, and remains upgradable.

TDR costs of ~8 BILCU for 500 GeV (ILCU = 2012 US\$ estimate used in the TDR) can be reduced by up to ~40%

### Status and Prospect for ILC





### Status and Prospect for ILC





 Physics WG, and TDR Validation WG re-organized to evaluate ILC-250GeV.



8 June 2018

## CLIC layout, power generation





#### LHCP Bologna, Steinar Stapnes

### Drive beam quality

• Produced high-current drive beam bunched at 12 GHz



Three challenges:

- High-current drive beam bunched at 12 GHz
- Power transfer + mainbeam acceleration
- ~100 MV/m gradient in main-beam cavities

### Two beam acceleration

• Demonstrated two-beam acceleration



- High-current drive beam bunched at 12 GHz
- Power transfer + mainbeam acceleration
- ~100 MV/m gradient in main-beam cavities











#### 8 June 2018

## X-band performance

• Achieved 100 MV/m gradient in main-beam RF cavities

#### Three challenges:

- High-current drive beam bunched at 12 GHz
- Power transfer + mainbeam acceleration
- ~100 MV/m gradient in main-beam cavities











#### Nano-beams

The CLIC strategy:

- Align components (10µm over 200m)
- Control/damp vibrations (from ground to accelerator)
- Measure beams well allow to steer beam and optimize positions
- Algorithms for measurements, beam and component optimization, feedbacks
- Tests in small accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, CTF3, Light-sources)







LHCP Bologna, Steinar Stapnes

### SwissFEL – C-band linac







- 104 x 2m-long C-band structures (beam → 6 GeV @ 100 Hz)
- Similar um-level tolerances
- Length ~ 800 CLIC structures
- Being commissioned



## CLIC Technology and FELs





CLIC technology for different applications

- EU co-funded FEL design study
- SPARC at INFN-LNF
- ... many other small systems ...



INFN Frascati advanced acceleration facility EuPARXIA@SPARC\_LAB





LHCP Bologna, Steinar Stapnes

#### Cost and Power



Year 🕨

Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.

|                                                  | Value [MCHF of December 2010] |
|--------------------------------------------------|-------------------------------|
| Main beam production                             | 1245                          |
| Drive beam production                            | 974                           |
| Two-beam accelerators                            | 2038                          |
| Interaction region                               | 132                           |
| Civil engineering & services                     | 2112                          |
| Accelerator control & operational infrastructure | 216                           |
| Total                                            | 6690                          |





A cost of ~6 BCHF and power ~200 MW are considered "reasonable" values → implementable

#### 8 June 2018

#### LHCP Bologna, Steinar Stapnes

#### 2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

#### 2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

#### 2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning



#### 2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

#### 2025 Construction Start

Ready for construction; start of excavations

#### 2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion



8 June 2018

### Conclusions

Important progress toward the EU strategy

#### ILC

250 GeV centre-of-mass being evaluated

SCRF: European XFEL is large-scale prototype

Political process ongoing

Hope for executive level statements this year

#### CLIC

380 GeV first energy stage

Normal conducting FELs are prototypes, e.g. Swiss FEL

Work on further stages to 3 TeV

Project Implementation Plan by end of 2018

Many thanks to D.Schulte, L. Evans, Y.Okada, S.Michizono, A.Yamamoto, W. Wuensch, Ph. Burrows ... the ILC and CLIC teams



