LHCP POSTER SESSION – BOLOGNA, JUNE 2018 Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Motivation

- Search for resonant WZ production in the fully leptonic final state (*lvll*, where $l = e, \mu$) in exclusive $q\bar{q}$ and VBF production modes
- Diboson vector and scalar resonances predicted by models like Composite Higgs models, Grand Unified Theories, theories with extra dimensions etc.
- Study two benchmark models:
 - Vector: Heavy Vector Triplets (HVT): W' [D. Pappadopulo et al., JHEP 09 (2014) 060]
 - Scalar: Georgi-Machacek (GM) Higgs Triplet Model: H_5^{\pm} [H. Georgi and M. Machacek, Nucl. Phys. B 262, (1985) 463]

Signature

Dominant systematics

Production modes

- 3 high $p_{\rm T}$ charged leptons
- Missing transverse energy
- VBF-category:
 - \succ Two jets with large η separation
 - and high invariant mass
- qq-category: Fails VBF selection

Object and event selection

Reference:

ATLAS-EXOT-2016-11

- Single lepton trigger
- 3 high $p_{\rm T}$ >25 GeV isolated leptons
- 4^{th} lepton veto (p_{T} >7 GeV) to reduce ZZ background
- *Z* selection:
 - Pair of same flavour, opposite sign leptons
 - Consistent with Z boson mass in a ± 20 GeV window
- W selection
 - Third lepton
 - MET > 25 GeV

VBF category:

- Use of jet vertex tagger to
 - mitigate pile-up contamination
- B-jet veto
- Event selection:
 - \rightarrow q \overline{q} : p_T^Z/m_{WZ} >0.35 and $p_{\rm T}^W/m_{WZ}$ >0.35
 - > VBF: 2 jets with $m_{ii} > 500 \text{ GeV}$ and $\Delta \eta_{ii} > 3.5$
- Reconstruct invariant WZ mass using MET, the third lepton and known W mass

- The effect of systematic uncertainties on the extracted limit of the signal-strength parameter μ
- Largest impact on sensitivity:

Limit obtained using a binned

- Statistical uncertainties on data
- Uncertainties related to WZ background modelling

likelihood function built from a sum of

Source	$\Delta\mu/\mu$ [%]	
	qq Category	VBF Category
	m(W') = 800 GeV	$m(H_5^{\pm}) = 450 \text{GeV}$
WZ modelling : Scale, PDF	5	11
WZ modelling : Parton Shower	10	6
MC statistical uncertainty	7	8
Electron identification	4	2
Muon identification	3	3
Jet uncertainty	1	8
Missing transverse momentum	2	1
Fakes	1	5
Total systematic uncertainty	17	21
Statistical uncertainty	53	52

Results

- Upper limits on $\sigma \times B$ as well as on $\sin\theta_H$ parameter of the GM model
- Regions where $\Gamma/m > 5\%$ are shaded

Acceptance x Efficiency

- Dominant background: Standard Model production of WZ
- > Normalization and shape are estimated from Monte Carlo (MC)
- Other smaller background estimated with MC
 - \succ ttbar+V, ZZ, tZ, VVV, WZ+bj
- Events from backgrounds (Z+jets, Z, W, ttbar, single top or WW) where jets are

misidentified as leptons (fake/non-prompt leptons) are estimated by a data-driven method using a global matrix method

Validation regions

- First results for resonant WZ production in qq- and VBF-Category using 36.1 fb⁻¹ of \sqrt{s} = 13 TeV *pp* data collected by ATLAS
- Limits are obtained as a function of the mass of a charged member of a heavy vector triplet or of the fiveplet scalar in the Georgi-Machacek model
- The largest deviation from the background prediction appears in the VBF-category at a resonance mass of around 450 GeV, this corresponds to a local (global) significance for H_5^{\pm} signals of 2.9 (1.6) and for heavy vector W' signals of 3.1 (1.9)

Benjamin Freund, Université de Montréal, on behalf of the ATLAS Collaboration

