Data-driven methods for misreconstructed objects estimation in lepton final states with ATLAS at $\sqrt{s} = 13$ TeV

Searches for new physics in lepton final states provide powerful signature towards discoveries: challenging understanding of detector-related backgrounds.

1) Charge misidentification probability

- jets from initial/final state radiation can be misidentified as prompt leptons.
- Trident event: $e^- \rightarrow \gamma \rightarrow e^- e^- e^-$
 Electromagnetic cluster can be matched to wrong electron track in ID.

2) Fake lepton background

- Tight: pass more stringent identification and isolation criteria.
- Loose: pass required to fail tight isolation requirement. Fake leptons usually less isolated.

3) Systematic uncertainties

- Charge-flip: vary the choice of Z peak range; negligible compared to statistical uncertainty in data and simulated events.
- Fake factors:
 - alter missing E_T requirement to vary W jets composition
 - change recoin jet requirements to study fake composition
 - d_0 varied up/down by 1 unit
 - normalization of simulated samples varied up/down by 10% to 20% across p_T and $|\eta|$ bins

4) Methods used in new physics searches

- Doubly-charged boson Higgs production: 2,3,4 leptons final states, $N_{\text{jets}} = 0$
 Search for heavy leptons in type III See-Saw models (see Tadej Novak’s poster for more details): 2 leptons, 2 jets and missing E_T.

Fig. 1: Example of $t\bar{t}$ event with possible multiple misreconstructed objects.

Tab.1: "fake-enriched" control regions used for

- Special treatment for low statistics:
 - $P(0, |\eta|) = 32\% \rightarrow \lambda = 1.14$, 68% CL
 - $N_{\text{fake}} = 2 \times 0.38 \times (0.38 - 0.38 \times 0.25)$
 - $N_{\text{fake}} = 0.085$
 - $N_{\text{fake}} = 0.09$

- Prevents from 0% fake estimate (Fig. 6(b)).

Methods validated across different kinematic regimes and event topologies efficiently applied to more than one new physics search.