

# Measurements of the W/Z production with (heavy flavour) jets in ATLAS

*W/Z+jets* allows to test perturbative QCD and to perform high precision measurements, comparable with theoretical predictions. The W/Z production with *heavy flavour-jets* (HF-jets) is a benchmark for understanding the proton structure and the gluon splitting. Moreover it constitutes a large background for Higgs and new physics searches with high jet multiplicity final states.

### W+JETS @ 8 TEV

Differential cross sections for  $W(\rightarrow ev)$ +jets and  $W^+/W^-$  cross section ratios are

s = 8 TeV, 20.2 fb

 $p_{-}^{jet} > 30 \text{ GeV}, |y_{-}^{jet}| < 4.4$ 

■▼ SHERPA 2.2.1 NLO

MCFM, CT10 NLO

MCFM, MSTW08 NLO

W boson p\_ [GeV]

measured with  $L = 20.2 \, fb^{-1}$ .

#### <u>Dominant backgrounds:</u>

- **♦ multijet** for W+≥1,2,3 jets (8-16%)
- → top for W+≥4,5,6 jets (16-36%).
  For W+≥7 jets, top is larger than signal (43%), even vetoing b-jets.

W+/W- well described by all predictions.

W+≥1jet: offset between LO
ALPGEN+PY and LO
ALPGEN+HERWING due to
Matrix Element calculations
and/or incorrect u/d ratio in the
LO PDF.

 $(W^+ + \ge 1 \text{ jets})/(W^- + \ge 1 \text{ jets})$ 

MCFM, HERAPDF NLO

MCFM, NNPDF 2.3 NLO

function of  $W p_T$  for  $W+\geq l$  jet.



JHEP 05 (2018) 077

Fig.1: Measured W+/W- cross section ratio for the different inclusive  $N_{jets}$ .

#### Dominant systematic uncertainties on W+/W- from jet energy scale (0.3-17%) and multijet (1.2-27%).

W+/W- vs W p<sub>T</sub> not well described by NLO SHERPA and NLO BLACKHAT+SHERPA.

NLO MCFM prediction is shown for CT10, HERAPDF, MSTW08 and NNPDF2.3 NLO PDF sets.

For  $200 < p^{W}_{T} < 400$  GeV all PDFs predict two times larger with respect to data.

Fig. 2: Measured W+/W- cross section ratio as a constrain PDFs.

### **Z**+**J**ETS @ **13** TEV

Differential cross sections for Z+jets (up to 7) are measured with  $L = 3.16 \, \text{fb}^{-1}$ .

|        | <b>Z→e-e+(%)</b><br>≥1 (7) jets | <b>Z→μ⁻μ⁺ (%)</b><br>≥1 (7) jets |
|--------|---------------------------------|----------------------------------|
| Signal | 97.6 (81.2)                     | 97.5 (84.6)                      |
| Тор    | 1.2 (11.6)                      | 1.1 (7.7)                        |
| Others | 1.4 (7.5)                       | 1.5 (7.9)                        |

Tab.1: Fraction of signal and background events in the final selection.

do/dp<sub>T</sub> well modelled by most predictions. **LO MG5\_aMC+PY8 CKKWL** models a too hard jet p<sub>T</sub> spectrum for  $p_T^{jet}>200$  GeV.



Fig.4: Measured cross section as a function of

 $H_T$  for inclusive  $Z+\geq 1$  jet.

for

Eur. Phys. J. C77 (2017) 361



Fig.3: Measured cross section as a function of the leading  $p_T^{jet}$  for  $Z+\geq 1,2,3,4$  jets.

p<sub>r</sub> (leading jet) [GeV]

#### <u>Uncertainties:</u>

- → jet energy scale and resolution (8-25%)
- **♦ PDF** and **QCD scale** variations (1-5%).

 $H_T$  = scalar sum of the  $p_T$  of final state objects

dσ/dH<sub>T</sub> well described by NLO SHERPA 2.2, LO ALPGEN+PY6 and NLO MG5\_aMC+PY8 FXFX. NLO BLACKHAT+SHERPA underestimates the cross sections for H<sub>T</sub>>300 GeV (missing contributions for higher jet multiplicities).

Significant improvement is obtained with NNLO Z+≥1 jet N<sub>jetti</sub>.

# SIMULATIONS FOR Z/W+HF-JETS @ 13 TEV

## Two schemes used in the HF-jets production: 4FNS and 5FNS, the latter considering b-quarks in the initial state.

do/dp<sub>T</sub> of the leading b-jet very different among the generators. 5FNS LO MG5\_aMC+PY8



Fig. 5: Predictions for differential cross section as a function of leading b-jet  $p_T$  for W+1 b-jet at 13 TeV.





Fig. 6: Predictions for differential cross section as a function of  $\Delta R_{bb}$  for  $Z+\geq 2$  b-jets at 13 TeV.

Difference
between 4FNS
and 5FNS can
probe proton
structure.

Interesting to see
W/Z+HF-jets
measurements at
13 TeV data.

 $\Delta R(b, b)$   $\Delta R_{bb}$  = angular separation between 2 b-jets

# Discrepancy between data and all predictions in the low $\Delta R_{bb}$ range.

JHEP10(2014)141



Fig. 7: Measured differential cross section as a function of  $\Delta R_{bb}$  for  $Z+\geq 2$  b-jets at 7 TeV.

