

Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector

Alex Wang (University of Wisconsin-Madison)

On behalf of the ATLAS collaboration

LHCP 2018

Introduction

- ► The coupling of the Higgs boson to the top quark is of particular importance as the top is the heaviest particle in the Standard Model.
- ► Indirect measurements of the top Yukawa coupling have been performed by probing gluon fusion production and diphoton decay loops.
- ► However, **Higgs production in** association with a pair of top quarks $(t\bar{t}H)$ presents a **direct** tree-level test of the top Yukawa coupling.

Figure 1: A representative diagram of the $t\bar{t}H$ production mode.

- \blacktriangleright $t\bar{t}H$ production is measured by the $\gamma\gamma$, four-lepton, multilepton, and bb analyses which target various Higgs decay channels using up to 79.8 ${
 m fb}^{-1}$ of $\sqrt{s} = 13 \text{ TeV } pp$ collision data collected by the ATLAS detector.
- ▶ The 13 TeV $\gamma\gamma$ and four-lepton analyses are **newly optimized**.
- ► The 13 TeV analyses are combined with previous analyses at 7 and 8 TeV.
- ► The combined results establish **observation** of the production of the Higgs boson in association with a top quark pair.

Figure 2: Representative diagrams for the Higgs decay modes targeted by the various analyses.

$t ar{t} H(H o \gamma \gamma)$ Analysis (79.8 ${ m fb}^{-1}$, 13 ${ m TeV}$)

- ► Events are selected requiring two photons, and split into two regions, hadronic and leptonic, based on the decay of the top quark.
- ► The main backgrounds include non-resonant $\gamma\gamma$ events with heavy flavor and $t \bar{t} \gamma \gamma$ production.
- ► Two boosted decision trees are trained using the **XGBoost** machine learning package.
- ► Excellent separation between signal and background is achieved by focusing on object-level **variables**, such as the p_T and η of the photons, jets, and leptons.

Figure 4: The observed data, expected background, and expected $t\bar{t}H$ signal in each category.

ATLAS

Had region

 \sqrt{s} = 13 TeV, 79.8 fb⁻²

Non-ttH Higgs

BDT Output

☐ ttH

- obtained from a simultaneous fit to the diphoton mass spectrum $m_{\gamma\gamma}$ across all categories.
- ► The observed (expected) significance is 4.1σ (3.7 σ).

Figure 5: The diphoton mass spectrum of the selected events in all seven categories, weighted by ln(1+S/B) of each category (Left), and a reconstructed top mass for the best selected events, rejected events, and $t\bar{t}H$ signal (Right). The top mass variable is not used in the BDT training.

$t\bar{t}H(H \to Four\text{-}Lepton) \text{ Analysis } (79.8 \text{ fb}^{-1}, 13 \text{ TeV})$

- ightharpoonup The four-lepton analysis targets the $ZZ^* \to 4\ell$ decay of the Higgs, selecting events with four electrons, four muons, or two electrons and two muons.
- ightharpoonup The main backgrounds include $t\bar{t}W$, $t\bar{t}Z$, and non- $t\bar{t}H$ Higgs boson production, which are estimated from simulation.
- \blacktriangleright No events are observed. The observed (expected) significance is 0σ (1.2 σ).

$t\bar{t}H$ Multilepton Analysis (36.1 fb⁻¹, 13 TeV)

- ightharpoonup The multilepton analysis targets Higgs decays into the WW^* , au au, and ZZ^* (excluding $ZZ^* \to 4\ell$) final states.
- Events are categorized into eight signal regions based on the number and flavor of charged leptons, including hadronically decaying aus.
- ► The main backgrounds include $t\bar{t}V$ production and events with non-prompt leptons or fake hadronic aus.
- ► The observed (expected) significance is 4.1σ (2.8σ).

Figure 6: The fraction of expected $t\bar{t}H$ signal from each targeted decay mode.

$t\bar{t}H(H\to b\bar{b})$ Analysis (36.1 ${ m fb}^{-1}$, 13 TeV)

- ► Events are selected requiring leptons from top quark decays, and are then categorized by the number of jets and b-tagging discriminants.
- ightharpoonup The main backgrounds include $t\bar{t}$ + jets events.
- ▶ The observed (expected) significance is 1.4σ (1.6σ).

Combination and Results

- ► The following analyses are included in the combination:
 - \triangleright The $\gamma\gamma$ and four-lepton analyses using 79.8 fb⁻¹ of 13 TeV data
 - \triangleright The multilepton and $b\bar{b}$ analyses using 36.1 fb⁻¹ of 13 TeV data
- \triangleright The $\gamma\gamma$, multilepton, and $b\bar{b}$ analyses using 20.3 fb⁻¹ of 8 TeV data
- \triangleright The $\gamma\gamma$ analysis using 4.5 fb⁻¹ of 7 TeV data
- \blacktriangleright All branching ratios and non- $t\bar{t}H$ production cross sections are fixed to Standard Model values.
- ► The relevant systematic uncertainties are **correlated** between the various analyses, and the robustness of the correlation scheme is checked.
- A simultaneous fit to the signal and control regions of the individual analyses is performed to extract the combined significance and cross section.

Figure 7: The ratio of the measured $t\bar{t}H$ cross sections to the predicted cross section at 13 TeV, by analysis (Left), and the measured $t\bar{t}H$ cross sections at 8 and 13 TeV, compared to predictions (Right).

- \triangleright Combining the 13 TeV $t\bar{t}H$ analyses, the observed (expected) significance is 5.8σ (4.9σ) over the background-only hypothesis.
- \triangleright Combining the 7, 8, and 13 TeV $t\bar{t}H$ analyses, the observed (expected) significance is 6.3σ (5.1σ) over the background-only hypothesis.
- \blacktriangleright The $t\bar{t}H$ production cross section at 13 TeV is measured to be 670 ± 90 (stat) $^{+110}_{-100}$ (sys) fb, consistent with the predicted value of 507^{+35}_{-50} fb.
- ► These results establish a direct **observation** of the Higgs boson Yukawa coupling to the top quark.