

ATLAS Electron and Photon Trigger

Joaquín Hoya¹, on behalf of the ATLAS Collaboration

ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger evolution throughout the Run 2 is presented, including new techniques developed to maintain their high performance even in high pile-up conditions as well as first efficiency measurements from the 2018 data taking.

Run-2 ATLAS Trigger/DAQ system

- ullet Two-level system to reduce average event rate recording to ~ 1 kHz, from the LHC beam crossing rate of 40 MHz. \sim 20% allocated for e/ γ .
- Hardware-based Level 1 (L1) trigger
 - Uses low granularity data from calorimeters and muon system.
 - Identifies regions of interest (Rols).
 - Maximum output rate of 100 kHz.
- Software-based high-level trigger (HLT)
 - Full granularity data from all the detector + Rols from accepted events by the L1.
 - Performs the online particle reconstruction.

Fast Track Reconstruction

Fast Electron Reconstruction

.....

Precise e/γ Sele

Trigger

Sequence

Triggering e/γ

- HLT e/γ trigger reconstructs objects within electromagnetic (EM) Rol provided by the L1 Calorimeter (L1Calo) trigger.
- e/γ HLT sequence
 - Fast algorithms reject events early.
 - Precise algorithms to efficiently identify e/γ
 - + Cut-based ID for Photons.
 - + Likelihood-based ID for Electrons.
- Clusters are reconstructed with a sliding window algorithm; selection is based on the transverse energy of the cluster (E_T) .
- Common shower shape variables for e/γ calculated for identification.
- Photons are reconstructed with only the cluster.
- Electron candidates have tracks loosely matched to the cluster $(\Delta \phi, \Delta \eta)$.
- Tracks are then extrapolated to 2nd EM layer.
- Electrons have additional information
- hits in the tracking detectors.

Improvements in Run-2

- Topological cluster based isolation for photons. Online since 2017.
- New Neural Network based algorithm (Ringer) to improve fast calorimeter selection for the electron trigger chains. Re-optimized in 2018.
- Identification for electrons at HLT.
 - Likelihood selection and ID pileup correction updated for 2018 data taking.
- Peak inst. Iumi Pileup $10^{33} \text{cm}^{-2} \text{s}^{-1}$ fb^{-1} 2015 3.9 2016 13.8 25.1 35.6 2017 20.9 46.9 2018 21.4

Sources of inefficiency for single electron triggers

- Study on data 2017, at each selection step in the HLT w.r.t offline reconstruction.
- Try to keep online selection as close as possible to offline.
- Still some differences, mainly in the Precision Electron step
 - In particular in the tracking.
- The trigger developments are made to minimize those differences.

Ringer Algorithm

- Build from using all calorimeter layers, centered in a window around the cluster barycenter.
- First ring in each layer is the cell closest to cluster barycenter.
- The next ring is the collection of cells around the previous one. Ring value is the sum E_T of all cells composing the ring.
- Same signal efficiency w.r.t cut-based fast calo step.
- Primary chain latency reduction: 200ms to \sim 100ms.
- High rejection power (\sim 2-3X). Electron + photon slice: \sim 1/4 latency reduction.

Electron and Photon HLT trigger rates

Both electron (left) and photon (right) trigger rates have a roughly linear dependence on the instantaneous luminosity

Electron Trigger Performance

- Efficiencies measured with a tag-and-probe method.
- Using Z \rightarrow ee decays in early 2018 data and late 2017 data.
- Offline reconstructed electrons are required to pass a likelihood-based ID.
- The error bars show statistical uncertainties.
- Achieving same performance in 2018 conditions as in 2017. Robust against pileup.

Photon Trigger Performance

- Efficiencies measured based on a data-driven bootstrap method
- Events selected from a fully efficient reference trigger to measure the performance of the offline trigger.
- No background subtraction is applied. Bayesian statistical uncertainty.
- Good trigger performance. Robust against pileup.

twiki.cern.ch/twiki/bin/view/AtlasPublic/EgammaTriggerPublicResults