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ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing
luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger evolution throughout the Run 2
is presented, including new techniques developed to maintain their high performance even in high pile-up conditions as well as first efficiency measurements from the 2018 data taking.
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® Two-level system to reduce average event rate recording to ~1 kHz, from the LHC * Build from using all calorimeter layers, centered in a window around the cluster barycenter.
beam crossing rate of 40 MHz. ~ 20% allocated for e/~. - First ring in each layer is the cell closest to cluster barycenter.
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- Uses low granularity data from sum E7 of all cells composing the ring.
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+ Cut-based ID for Photons. } ___ Effcent Blectron Slection_ - * Both electron (left) and photon (right) trigger rates have a roughly linear dependence

+ Likelihood-based ID for Electrons.
® Clusters are reconstructed with a sliding window al-

on the instantaneous luminosity
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® Tracks are then extrapolated to 2nd EM layer.
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® Electrons have additional information
- hits in the tracking detectors.

- transition radiation hit information. third layer ,~ e eter Electron Trigger Performance
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- reduced offline software and techniques. seeenel lepe

o Efficiencies measured with a tag-and-probe method.

first layer (strips) - Using Z — ee decays in early 2018 data and late 2017 data.
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. . e Offline reconstructed electrons are required to pass a likelihood-based ID.
TRT (72 layers) L e zannnlihy ® The error bars show statistical uncertainties.
\ ~~~~~~~~ NP EEE Ro ® Achieving same performance in 2018 conditions as in 2017. Robust against pileup.
SCT \ T
beam axis \."'.. . HEE > 12T T ] > L e B B L AN RN A
: - s I ATLAS Preliminary 1 s F ATLAS Preliminary 7
: t . EE Ry o 4L ] c 0.95 E
primary vertex " Fum, EEE 50 P — 5 oof :
TRT PID 0.8:— :9‘ E 0_85?A_——9:—’—‘—=Az6==5= a _:
08t - 0.8 E
0.4:_ @ Tight, isolated electron trigger, ET>28 GeV _: 0_753_ Tight, isolated electron trigger, ET>28 GeV _f
L —e— s 13 TeV, Data 2018, 534 pb™' - C —e— s 13 TeV, Data 2018, 534 pb™ 7
0 2:_ —#— Vs 13 TeV, Data 2017, 688 pb"’ _: 0'7;_ —— Vs 13 TeV, Data 2017, 688 pb"’ _;
Improvements in Run-2 T . 0.65 Offline electron E,>29 GeV =
P Q636" 364650807380 80 700 1075 2025 30 35 40 45 50 55 60
. . . Er [GeV] <u>
» Topological cluster based isolation for pho- Year Peak inst. lumi| Pileup| /L
tons. Online since 2017. [103cm251] <p> | 7]
* New Neural Network based algorithm (Ringer) 2015 5.0 13.4 139 Photon Trigger Performance
to improve fast calorimeter selection for the 2016 13.8 25.1 135.6
lectron trigger chains. Re-optimized in 2018. 2017 20.9 37.8 |46.9 L :
elect _0_ t .|gge dreims. [Re eppiimized fn ALLS 2018 214 i _ o Efficiencies measured based on a data-driven bootstrap method.
» l|dentification for electrons at HLT. '

- Events selected from a fully efficient reference trigger to measure the performance

- Likelihood selection and ID pileup correction updated for 2018 data taking. o the elfifne wisser

* No background subtraction is applied. Bayesian statistical uncertainty.
® Good trigger performance. Robust against pileup.

Sources of inefficiency for single electron triggers
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