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The energy and mass of jets measured with the ATLAS detector are calibrated through a multi-step process. The residual
in-situ calibration, is obtained from the data-to-simulation ratio of the p_balance between jets and a reference object. Several
in-situ methods are combined to obtain a continuous and smooth calibration scale over a wide range of phase space. A smooth
jet energy scale calibration is important for dijet resonance searches with high statistics. The nominal procedure for combining
in-situ methods is presented alongside an alternative procedure that ensures smoothness and was used for the ATLAS Dijet
Trigger Level Analysis [1]. The calibration chain is similar for all types of jet, but throughout this poster anti-k, R=0.4 EMTopo

jets are used as an example.
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* Smooth calibration curve guaranteed by the fit-based combination procedure
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Example of such a search: Dijet Trigger Level Analysis (see W. Kalderon's poster)
» Search for low-mass dijet resonances overwhelmed by QCD background — cannot record all data, lose sensitivity
» Solution: Use high-level information from data selection (trigger) system to record more data for a smaller event size
» Consequence: Very high statistics, needs a calibration that is smooth — uses fit-based combination 2] S0 50760 B0 1655 Y
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