

Performance of the ATLAS Muon Spectrometer at $\sqrt{s} = 13$ TeV

Johannes Junggeburth, on behalf of the ATLAS Collaboration

ABSTRACT

Muon reconstruction and identification play a fundamental role in many analyses of central importance in the LHC run-2 Physics programme. The algorithms and the criteria used in ATLAS for the reconstruction and identification of muons with transverse momentum from a few GeV to the TeV scale will be presented. Their performance is measured in data based on the decays of Z and J/Ψ to pair of muons, that provide a large statistics calibration sample. Reconstruction and identification efficiencies are evaluated, as well as momentum scales and resolutions, and the results are used to derive precise MC simulation corrections.

MUON RECONSTRUCTION AND SELECTION

INNER DETECTOR - ID

The Inner Detector's task is to track charged particles and determine their charge and momentum within $|\eta| < 2.5$ using a 2 T solenoid magnetic field, as well as to identify vertices.

MUON SPECTROMETER - MS

The Muon Spectrometer is designed for muon detection in the range $|\eta| < 2.7$. Three large air core toroidal magnets with a mean magnetic field of 0.5 T allow for a precise measurement of muon momenta up to the TeV range.

Thin-gap chambers (TGC)

LHC RUN-II DATA

The ATLAS dataset taken at $\sqrt{s} = 13$ TeV comprises an integrated luminosity of ≈ 100 fb⁻¹, of which 90 fb⁻¹ are suitable for physics analyses.

MUON SELECTION

Combining tracks of the ID and MS, the ATLAS software provides four complementary types of reconstructed muons: Combined, Segment-tagged, Stand-alone and Calorimeter-tagged muons.

- Depending on the kinematics and desired purity, these form five categories of muons:
- **Loose** maximized efficiency
- Medium compromise between efficiency and purity, low systematic uncertainties
- **Tight** strong rejection of misidentifications
- ► **High** p_{T} maximized momentum resolution for $p_{T} > 100 \text{ GeV}$

Low p_{T} - optimized to maintain high purity for $p_{T} \lesssim 5$ GeV

MUON RECONSTRUCTION EFFICIENCY

The **reconstruction efficiency** is measured using a **tag-and-probe method** based on $Z \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow \mu^+\mu^-$ events described in Eur.Phys.J.C (2016) 76:29.2. The measurement is carried out in both data and simulation, and a **scale factor** is derived as the ratio between the two results. These scale factors are applied to the simulation in order to correct for a possible mismodeling of the muon reconstruction efficiency.

Left: Measured reconstruction efficiency as a function of the pile-up $\langle \mu \rangle$ for muons with $p_T > 10$ GeV in 2017 data.

Below: Muon reconstruction efficiency as a function of the pseudorapidity (left) and of the transverse momentum (right) in early 2018 data.

MUON MOMENTUM SCALE AND RESOLUTION

Corrections to the simulated muon momentum scale and resolution are extracted separately for ID and MS tracks using a template-based likelihood fit as described in Eur.Phys.J.C (2016) 76:29.2. The bulk of the corrections is derived from $Z \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow \mu^+\mu^-$ decays in 33.3 fb⁻¹ of *pp* data collected at $\sqrt{s} = 13$ TeV in 2016.

Left: Dimuon invariant mass distribution of $Z \rightarrow \mu^+ \mu^-$ candidate events reconstructed with CB muons out of 4.0 fb⁻¹ of proton-proton collision data collected in 2018.

Below: Fitted resonance mass parameter for $Z \rightarrow \mu^+\mu^-$ decays (left) and mass resolution (right) as a function of the leading muon pseudorapidity shown for 4 fb⁻¹ of early 2018 data.

The measured muon reconstruction efficiency exceeds 98% and is robust against high pile-up. Excellent agreement between reconstructed efficiencies in data and simulation is observed.

MUON-2018-001

