Phase I and II Upgrades of the ATLAS Muon Spectrometer with Integrated Small Diameter Drift Tube Chambers and **Thin-Gap Resistive Plate Chambers**

SATLAS The Sixth Annual Large Hadron Collider Physics Conference LHCP 2018

Verena Walbrecht (walbrech@mpp.mpg.de) on behalf of the ATLAS Muon Collaboration

Motivation:

Small-Diameter Muon Drift Tube (sMDT):

Limited barrel muon trigger coverage: η=0.75 η=0.4 η=1.0 **η=0**

High p_{τ} muon trigger acceptance is limited to \approx 72% due to non-instrumented regions of the muon spectrometer:

Reducing the drift tube diameter by a factor of 2:

- 8 x lower background occupancy (4 x shorter maximum drift time,

- $\eta = 0$: Non-instrumented region of the spectrometer to provide space for services of the inner detector and the calorimeters
- $\eta = 0.4, 0.75, 1.0$: Non-instrumented region due to toroid and rib structures
- Installation of additional RPCs with increased high-rate capability in the inner barrel layer \rightarrow increase muon trigger acceptance
- Replacement of MDT chambers with sMDT chambers in small barrel sectors to free space for RPCs
- \rightarrow Phase II (2019/20): 16 sMDT+RPC chambers

Automated drift tube production and test:

Wire insertion by air flow

2 x smaller tube cross section)

- Electronics dead time (≈max. drift time because of after pulses) can be reduced by a factor of 4
- Space for twice as many tube layers \rightarrow additional increase of in muon tracking efficiency and resolution

Drift time spectrum:

Wire tension measurement

0.0003956

28.21 / 23

86.89 ± 4.38

0.01063

Thin-Gap Resistive Plate Chambers:

Prototype of a new RPC triplet in the light but stiff support frame:

Integrated sMDT and Thin-Gap RPC **Chambers**:

 \rightarrow Increase of lifetime well beyond 10 years at HL-LHC background rates

Twice thinner gas gaps (1mm) and thinner HLP electrodes and new highly sensitive amplifiers:

- Improvement of time resolution from 1 ns to 0.4 ns
- Allow for operation at substantially lower voltage, 5.4 kV instead of 9.6 kV, and \sim 15 x lower gas gain and avalanche charge

- New RPC chambers require replacement of existing MDT chambers by sMDT chambers \rightarrow provide sufficient radial space
- Tight spatial constraints on new detectors
- Optical sensors for global alignment system on top and bottom of sMDT drift tube layers

www.mpp.mpg.de

sMDT Chamber Construction (2018):

Measuring of Chamber:

Max-Plack-Institut für Physik

Föhringer Ring 6

80805 Munich

Germany