Measurement of the Higgs Self-Coupling in the HH → VVbb channel at the FCC-hh Collider

Sylvie Braibant - Elisa Fontanesi University of Bologna & INFN

The Sixth Annual Large Hadron Collider Physics conference LHCP 2018

Future Circular Collider

The FCC Study is an international collaboration of more than 70 institutes from all over the world, born to explore different designs of circular colliders for the post-LHC era. The study will deliver the concepts for a 100-TeV hadron collider (FCC-hh), providing a Conceptual Design Report (CDR) by 2018.

The key physics goals are the complete exploration of the Higgs boson sector and a significant extension of the search for physics phenomena Beyond the Standard Model (BSM).

Reference: Physics at the FCC-hh, a 100 TeV pp collider, CERN-2017-003-M

Why HH @ FCC?

The determination of processes which involve the multi-Higgs production is crucial for analysing the Higgs potential. Di-Higgs production is the standard process for studying the Higgs self-coupling (λ_3).

An analysis of the trilinear Higgs self-interaction can be sensitive to new-physics effects, providing important tests of the validity of the Standard Model.

Sizable corrections to λ_3 are predicted in BSM scenarios, leading, in some case, to large deviations in multi-Higgs production processes but not in other observables. We introduce a parametrization of an anomalous coupling:

$$\lambda_3 = k_\lambda \lambda_3^{SM}$$

HH DECAY MODES AND BRANCHING FRACTION:

 $HH \rightarrow bbZZ(4I)$

HH → bbWW(lvjj)

0.25 fb 62 fb

Sample generation

MADGRAPH5_amc@NLO

Parton-level generation of the signal and the backgrounds (NLO & reweighing)

DELPHESPYTHIA8

Parton shower & ideal FCC-hh detector parametrization

Analysis strategy and preliminary results

bbZZ(41)

L. Borgonovi, S. Braibant, N. De Filippis, E. Fontanesi, A. Taliercio

The signal and the backgrounds are studied using an optimized cut-flow based analysis.

Selection: 4μ (H peak search) + 2 b-jets

159

332

GeV

ts/0.1

40 EVE

- $N(\mu) \ge 4$
- N (di-leptons) ≥ 2
- $40 \le M_{71} \le 120 \text{ GeV}$
- $12 \le M_{72} \le 120 \text{ GeV}$
- N (isolated μ) ≥ 4
- p_T cuts
- $120 < M_{4\mu} < 130 \text{ GeV}$
- N (b-jets) = 2
- $80 < M_{bb} < 130 \text{ GeV}$
- $\Delta R(bb) < 2$

The signal is identified by using the boosted decision tree (BDT) technique: the BDT uses different shapes from leptons and jets distributions to create a BDT distribution.

bbWW(lvjj)

B. Di Micco, M. Testa, M. Verducci

Preselection

A set of preliminary cuts are applied to improve the performance of the BDT training:

- $80 < M_{\rm bh} < 150 \, {\rm GeV}$
- $p_{T}(WW) > 150 \text{ GeV}$
- $\Delta R(bb) < 2.0$

List of variables used in the BDT definition:

- **Δ**R between the two leptons
- ❖ ΔR between the two W
- ❖ p_T and invariant mass of WW
- \Leftrightarrow p_T, Δ R and invariant mass of 2 b-jets
- ❖ Transverse mass (M_T) of WW
- ⋄ p_T of neutrino
- ❖ M_T of the W decaying hadronically

The actual **best cut** for the BDTG is **0.61**, corresponding to a S/\sqrt{B} of 1.7.

The efficiency on the signal and the rejection efficiency on background are about 0.22 and 0.98 respectively.

The samples have been rescaled to 3000 fb⁻¹.

They are simulated considering a pile-up of 50.

Background

The most important backgrounds to consider are:

- bbWW
- V + jets

Background

ZZbb

After the cuts, the most relevant backgrounds are:

- ttH $(H\rightarrow 4I)$
- ZZbb

Backgrounds to check:

The event yields are

30 ab⁻¹. The samples

are simulated with

normalised to

pile-up 0.

- ttH (tt \rightarrow blvblv, H \rightarrow 21)
- Hbb →4l bb
- ZH

Conclusions

The goal of these FCC studies is to evaluate the sensitivity to the Higgs self-coupling for m_H = 125 GeV through the measurement of the non-resonant di-Higgs production final states at a 100 TeV collider. So far, a precision of about 10-15% and 20% on the SM cross-section can be estimated in the bbZZ(41) and bbWW(Ivjj), respectively, roughly corresponding to a precision of about 30% and 40% on the Higgs trilinear coupling. These results will contribute to the Conceptual Design Report (CDR) of the FCC-hh (by the end of 2018).